Evaluate the integral ∫x^3 sin〖x〗dx
"\\int x^3sinx\\, dx"
"Using\\ the\\ formula, \\int Udv = UV -\\int Vdu"
"\\begin{aligned}\n\nU = x^3 \\qquad &; \\qquad dv=sinx\\,dx \\\\\n\\frac{du}{dx}=3x^2\\qquad &; \\qquad \\int dv = \\int sinx\\, dx\\\\\ndu= 3x^2\\,dx\\qquad &; \\qquad V = -cosx\n\n\\end{aligned}"
"\\therefore \\int x^3sinx\\, dx = (x^3)(-cosx) - \\int(-cosx)(3x^2\\,dx)"
"\\int x^3sinx\\, dx = -x^3\\,cosx - \\int( -3x^2cosx\\,dx)"
"\\int x^3sinx\\, dx = -x^3\\,cosx - (-3)\\int x^2cosx\\,dx"
"\\int x^3sinx\\, dx = -x^3\\,cosx +3 \\int x^2cosx\\,dx\\ --(i)"
"\\int x^2cosx\\,dx ="
"\\begin{aligned}\n\nU = x^2\\qquad &; \\qquad dv = cosx\\,dx\\\\\n\\frac{du}{dx}= 2x\\qquad &; \\qquad \\int dv = \\int cosx\\,dx\\\\\ndu = 2x\\,dx\\qquad &; \\qquad V = sinx\n\n\\end{aligned}"
"\\therefore \\int x^2cosx\\, dx = (x^2)(sinx) - \\int(sinx)(2x\\,dx)"
"\\int x^2cosx\\, dx = x^2\\,sinx - 2\\int xsinx\\,dx\\ ---(ii)"
"\\int xsinx\\,dx ="
"\\begin{aligned}\n\nU = x\\qquad &; \\qquad dv = sinx\\,dx\\\\\n\\frac{du}{dx}= 1\\qquad &; \\qquad \\int dv = \\int sinx\\,dx\\\\\ndu = dx\\qquad &; \\qquad V = -cosx\n\n\\end{aligned}"
"\\therefore \\int xsinx\\, dx = (x)(-cosx) - \\int(-cosx)(dx)"
"\\int xsinx\\, dx = -xcosx + \\int cosx\\,dx"
"\\int xsinx\\, dx = -xcosx + sinx"
Substituting the value of "\\int xsinx\\,dx" into equation (ii),
"\\int x^2cosx\\, dx = x^2\\,sinx - 2\\int xsinx\\,dx"
"\\int x^2cosx\\, dx = x^2\\,sinx - 2(-xcosx+sinx)"
"\\int x^2cosx\\, dx = x^2\\,sinx +2xcosx - 2sinx"
Substituting the value of "\\int x^2cosx\\,dx" into equation (i), we have
"\\int x^3sinx\\, dx = -x^3\\,cosx +3 \\int x^2cosx\\,dx"
"\\int x^3sinx\\, dx = -x^3\\,cosx +3 (x^2\\,sinx +2xcosx - 2sinx)"
"\\int x^3sinx\\, dx = -x^3\\,cosx +3x^2\\,sinx +6xcosx - 6sinx + C"
"\\therefore The\\ integral\\ of\\ x^3sinx = -x^3\\,cosx +3x^2\\,sinx +6xcosx - 6sinx + C"
Comments
Leave a comment