1 ∫x10+100x4dx=∫(x5)2+102x4dx
Let x5=t⟹5x4dx=dt
then
∫x10+100x4dx=51∫t2+102dt=501tan−1(10t)
∫x10+100x4dx=501tan−1(10x5)+C
2 ∫x+x9dx=32x3/2+9ln∣x∣+C
3 ∫1+2ex−e−xdx=∫e−x+2−e−2xe−xdx
Let e−x=t⟹−e−xdx=dt
then ∫1+2ex−e−xdx=∫t+2−t2dt=−∫t2−t−2dt=−∫(t−21)2−49dt
=31ln∣t−2t+1∣=31ln∣e−x−2e−x−1∣
4 ∫9−x22x2dx=−2∫9−x29−x2−9dx=−2∫9−x2dx+18∫9−x21dx
=−9sin−1(3x)−sin(2sin−1(3x))+18sin−1(3x)+C
Formula used:
∫x2+a21dx=a1tan−1(ax)
∫x2−a21dx=−2a1(ln∣∣ax+1∣∣−ln∣∣ax−1∣∣)+C
∫a2−x21dx=arcsin(ax)+C
∫a2−x2dx=21a2(arcsin(ax)+21sin(2arcsin(ax)))+C
Comments