Question #134547
1) ∫ x^4/x^10+100 dx
2) ∫ √x+9/x dx
3) ∫ dx/1+2e^x – e^-x
4) ∫ 2x^2dx/√9-x^2
1
Expert's answer
2020-09-28T14:44:04-0400

x4x10+100dx=x4(x5)2+102dx\int \frac{x^4}{x^{10}+100 } dx = \int \frac{x^4}{(x^{5})^2+10^2 } dx

Let x5=t    5x4dx=dtx^5 = t \implies 5x^4dx = dt

then

x4x10+100dx=15dtt2+102=150tan1(t10)\int \frac{x^4}{x^{10}+100 } dx = \frac{1}{5}\int \frac{dt}{t^{2}+10^2 } = \frac{1}{50}tan^{-1}(\frac{t}{10})

x4x10+100dx=150tan1(x510)+C\int \frac{x^4}{x^{10}+100 } dx = \frac{1}{50}tan^{-1}(\frac{x^5}{10}) + C



x+9xdx=23x3/2+9lnx+C\int \sqrt{x} + \frac{9}{x} dx = \frac{2}{3}x^{3/2} + 9 ln|x| + C



dx1+2exex=exdxex+2e2x\int \frac{dx}{1+2e^{x} - e^{-x}} = \int \frac{e^{-x} dx}{e^{-x}+2-e^{-2x}}

Let ex=t    exdx=dte^{-x} = t \implies -e^{-x} dx = dt

then dx1+2exex=dtt+2t2=dtt2t2=dt(t12)294\int \frac{dx}{1+2e^{x} - e^{-x}} = \int \frac{ dt}{t+2-t^2} = - \int \frac{ dt}{t^2-t-2} = -\int \frac{ dt}{(t-\frac{1}{2})^2 - \frac{9}{4}}

=13lnt+1t2=13lnex1ex2= \frac{1}{3}ln|\frac{t+1}{t-2}| = \frac{1}{3}ln|\frac{e^{-x}-1}{e^{-x}-2}|


2x2dx9x2=29x29dx9x2=29x2dx+1819x2dx\int \frac{2x^2 dx}{\sqrt{9-x^2}} = -2\int \frac{9-x^2 -9 dx}{\sqrt{9-x^2}} = -2\int \sqrt{9-x^2} dx + 18\int \frac{1}{\sqrt{9-x^2}} dx

=9sin1(x3)sin(2sin1(x3))+18sin1(x3)+C=-9sin^{-1}(\frac{x}{3}) - sin(2sin^{-1}(\frac{x}{3})) + 18sin^{-1}(\frac{x}{3}) + C



Formula used:

1x2+a2dx=1atan1(xa)\int \frac{1}{x^2+a^2}dx = \frac{1}{a}tan^{-1}(\frac{x}{a})


1x2a2dx=12a(lnxa+1lnxa1)+C\int \frac{1}{x^2-a^2}dx=-\frac{1}{2a}\left(\ln \left|\frac{x}{a}+1\right|-\ln \left|\frac{x}{a}-1\right|\right)+C


1a2x2dx=arcsin(xa)+C\int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \left(\frac{x}{a}\right)+C


a2x2dx=12a2(arcsin(xa)+12sin(2arcsin(xa)))+C\int \sqrt{a^2-x^2}dx=\frac{1}{2}a^2\left(\arcsin \left(\frac{x}{a}\right)+\frac{1}{2}\sin \left(2\arcsin \left(\frac{x}{a}\right)\right)\right)+C





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS