"f(x) = x^2 - 3, g(x) = \\sqrt{3 + x}\\\\\n\n\nf(g(x)) \\hspace{0.1cm} \\textsf{means}\\hspace{0.1cm}\\textit{ f of g},\\\\\n\\textsf{i.e insert the function}\\hspace{0.1cm} g\\\\\\textsf{which is expressed as a function of }\\hspace{0.1cm} x\\\\ \\textsf{in the}\\hspace{0.1cm} x \\hspace{0.1cm}\\textsf{in function} \\hspace{0.1cm}f. \\\\\n\nf(g(x)) = (\\sqrt{3 + x})^2 - 3\\\\\n\n\nf(g(x)) = 3 + x - 3 = x\\\\\n\n\n\n\\textsf{similarly}\\hspace{0.1cm}g(f(x)) = \\sqrt{3 + (x^2 - 3)} = \\sqrt{3 + x^2 - 3} = \\sqrt{x^2} = x\\\\\n\n\n\\therefore \\textsf{Since}\\hspace{0.1cm} f(g(x)) = g(f(x)) = x,\\\\\n\\textsf{functions} \\hspace{0.1cm}f \\hspace{0.1cm}\\textsf{and} \\hspace{0.1cm}g\\hspace{0.1cm}\\textsf{are inverses of one another.}"
Comments
Leave a comment