Answer to Question #134532 in Calculus for sire

Question #134532
using L’Hˆopital’s in the following questions

1) I = limx-0 [1/x - 2/ln(1 + 2x)]
2) limx-0 [e^x + x]^1/x
3) limx-1+ (ln x)(tan(pi*x/2))
1
Expert's answer
2020-10-01T10:57:21-0400

limx0(1x2ln(1+2x))=limx0(ln(1+2x)2xxln(1+2x))=limx000\lim\limits_{x\rightarrow0}(\frac{1}{x} -\frac{2}{ln(1+2x)})=\lim\limits_{x\rightarrow0}(\frac{ln(1+2x)-2x}{xln(1+2x)})=\lim\limits_{x\rightarrow0}\frac{0}{0} =limx0((ln(1+2x)2x)(xln(1+2x)))==\lim\limits_{x\rightarrow0}(\frac{(ln(1+2x)-2x)'}{(xln(1+2x))'})=

limx0((ln(1+2x)2x)(xln(1+2x)))=limx0[21+2x2ln(1+2x)+2x1+2x]=limx04x(1+2x)ln(1+2x)+2x=\lim\limits_{x\rightarrow0}(\frac{(ln(1+2x)-2x)'}{(xln(1+2x))'})=\lim\limits_{x\rightarrow0}[\frac{\frac{2}{1+2x}-2}{ln(1+2x)+\frac{2x}{1+2x}}]= \lim\limits_{x\rightarrow0}\frac{-4x}{(1+2x)ln(1+2x)+2x}=

limx000=\lim\limits_{x\rightarrow0}\frac{0}{0}= limx0(4x)((1+2x)ln(1+2x)+2x)=\lim\limits_{x\rightarrow0}\frac{-(4x)'}{((1+2x)ln(1+2x)+2x)'}= limx042ln(1+2x)+(1+2x)21+2x+2=limx042ln(1+2x)+4=1\lim\limits_{x\rightarrow0}\frac{-4}{2ln(1+2x)+(1+2x)*\frac{2}{1+2x}+2}=\lim\limits_{x\rightarrow0}\frac{-4}{2ln(1+2x)+4}=-1


limx0(ex+x)1x=limx0eln(ex+x)1x\lim\limits_{x\rightarrow0}(e^x+x)^{\frac{1}{x}}=\lim\limits_{x\rightarrow0}e^{ln(e^x+x)^\frac{1}{x}} -we use equality a= elna

limx0ln(ex+x)1x=limx0ln(ex+x)x=\lim\limits_{x\rightarrow0}ln(e^x+x)^\frac{1}{x} = \lim\limits_{x\rightarrow0}\frac{ln(e^x+x)}{x} = limx000\lim\limits_{x\rightarrow0}\frac{0}{0}-we use equality log(ab) = blog(a)


limx0ln(ex+x)x=limx0(ln(ex+x)1x=limx0(ln(ex+x))x=\lim\limits_{x\rightarrow0}\frac{ln(e^x+x)}{x} = \lim\limits_{x\rightarrow0}(ln(e^x+x)^\frac{1}{x} = \lim\limits_{x\rightarrow0}\frac{(ln(e^x+x))'}{x'} = limx0ex+1ex+x1=2\lim\limits_{x\rightarrow0}\frac{\frac{e^x+1}{e^x+x}}{1}=2 hence

limx0(ex+x)1x=e2\lim\limits_{x\rightarrow0}(e^x+x)^{\frac{1}{x}}=e^2


limx1+lnxtan(πx2)=limx1+lnxcot(πx2)=limx1+00\lim\limits_{x\rightarrow1+}lnx*tan(\frac{\pi*x}{2})=\lim\limits_{x\rightarrow1+}\frac{lnx}{cot(\frac{\pi*x}{2})}= \lim\limits_{x\rightarrow1+}\frac{0}{0} we use equality tan(x) = 1/cot(x)

limx1+lnxcot(πx2)=limx1+(lnx)(cot(πx2))=limx1+1xπ2csc2(πx2)=\lim\limits_{x\rightarrow1+}\frac{lnx}{cot(\frac{\pi*x}{2})} =\lim\limits_{x\rightarrow1+}\frac{(lnx)'}{(cot(\frac{\pi*x}{2}))'}=\lim\limits_{x\rightarrow1+}\frac{\frac{1}{x}}{-\frac{\pi}{2}*csc^2(\frac{\pi*x}{2})}= 2π-\frac{2}{\pi}


Answer:

limx0(1x2ln(1+2x))=1\lim\limits_{x\rightarrow0}(\frac{1}{x} -\frac{2}{ln(1+2x)})=-1

limx0(ex+x)1x=e2\lim\limits_{x\rightarrow0}(e^x+x)^{\frac{1}{x}}=e^2

limx1+lnxtan(πx2)=2π\lim\limits_{x\rightarrow1+}lnx*tan(\frac{\pi*x}{2})=-\frac{2}{\pi}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment