x→0lim(x1−ln(1+2x)2)=x→0lim(xln(1+2x)ln(1+2x)−2x)=x→0lim00 =x→0lim((xln(1+2x))′(ln(1+2x)−2x)′)=
x→0lim((xln(1+2x))′(ln(1+2x)−2x)′)=x→0lim[ln(1+2x)+1+2x2x1+2x2−2]=x→0lim(1+2x)ln(1+2x)+2x−4x=
x→0lim00= x→0lim((1+2x)ln(1+2x)+2x)′−(4x)′= x→0lim2ln(1+2x)+(1+2x)∗1+2x2+2−4=x→0lim2ln(1+2x)+4−4=−1
x→0lim(ex+x)x1=x→0limeln(ex+x)x1 -we use equality a= elna
x→0limln(ex+x)x1=x→0limxln(ex+x)= x→0lim00-we use equality log(ab) = blog(a)
x→0limxln(ex+x)=x→0lim(ln(ex+x)x1=x→0limx′(ln(ex+x))′= x→0lim1ex+xex+1=2 hence
x→0lim(ex+x)x1=e2
x→1+limlnx∗tan(2π∗x)=x→1+limcot(2π∗x)lnx=x→1+lim00 we use equality tan(x) = 1/cot(x)
x→1+limcot(2π∗x)lnx=x→1+lim(cot(2π∗x))′(lnx)′=x→1+lim−2π∗csc2(2π∗x)x1= −π2
Answer:
x→0lim(x1−ln(1+2x)2)=−1
x→0lim(ex+x)x1=e2
x→1+limlnx∗tan(2π∗x)=−π2
Comments
Leave a comment