"\\lim\\limits_{x\\rightarrow0}(\\frac{1}{x} -\\frac{2}{ln(1+2x)})=\\lim\\limits_{x\\rightarrow0}(\\frac{ln(1+2x)-2x}{xln(1+2x)})=\\lim\\limits_{x\\rightarrow0}\\frac{0}{0}" "=\\lim\\limits_{x\\rightarrow0}(\\frac{(ln(1+2x)-2x)'}{(xln(1+2x))'})="
"\\lim\\limits_{x\\rightarrow0}(\\frac{(ln(1+2x)-2x)'}{(xln(1+2x))'})=\\lim\\limits_{x\\rightarrow0}[\\frac{\\frac{2}{1+2x}-2}{ln(1+2x)+\\frac{2x}{1+2x}}]=\n\\lim\\limits_{x\\rightarrow0}\\frac{-4x}{(1+2x)ln(1+2x)+2x}="
"\\lim\\limits_{x\\rightarrow0}\\frac{0}{0}=" "\\lim\\limits_{x\\rightarrow0}\\frac{-(4x)'}{((1+2x)ln(1+2x)+2x)'}=" "\\lim\\limits_{x\\rightarrow0}\\frac{-4}{2ln(1+2x)+(1+2x)*\\frac{2}{1+2x}+2}=\\lim\\limits_{x\\rightarrow0}\\frac{-4}{2ln(1+2x)+4}=-1"
"\\lim\\limits_{x\\rightarrow0}(e^x+x)^{\\frac{1}{x}}=\\lim\\limits_{x\\rightarrow0}e^{ln(e^x+x)^\\frac{1}{x}}" -we use equality a= elna
"\\lim\\limits_{x\\rightarrow0}ln(e^x+x)^\\frac{1}{x} = \\lim\\limits_{x\\rightarrow0}\\frac{ln(e^x+x)}{x} =" "\\lim\\limits_{x\\rightarrow0}\\frac{0}{0}"-we use equality log(ab) = blog(a)
"\\lim\\limits_{x\\rightarrow0}\\frac{ln(e^x+x)}{x} = \\lim\\limits_{x\\rightarrow0}(ln(e^x+x)^\\frac{1}{x} = \\lim\\limits_{x\\rightarrow0}\\frac{(ln(e^x+x))'}{x'} =" "\\lim\\limits_{x\\rightarrow0}\\frac{\\frac{e^x+1}{e^x+x}}{1}=2" hence
"\\lim\\limits_{x\\rightarrow0}(e^x+x)^{\\frac{1}{x}}=e^2"
"\\lim\\limits_{x\\rightarrow1+}lnx*tan(\\frac{\\pi*x}{2})=\\lim\\limits_{x\\rightarrow1+}\\frac{lnx}{cot(\\frac{\\pi*x}{2})}=\n\\lim\\limits_{x\\rightarrow1+}\\frac{0}{0}" we use equality tan(x) = 1/cot(x)
"\\lim\\limits_{x\\rightarrow1+}\\frac{lnx}{cot(\\frac{\\pi*x}{2})} =\\lim\\limits_{x\\rightarrow1+}\\frac{(lnx)'}{(cot(\\frac{\\pi*x}{2}))'}=\\lim\\limits_{x\\rightarrow1+}\\frac{\\frac{1}{x}}{-\\frac{\\pi}{2}*csc^2(\\frac{\\pi*x}{2})}=" "-\\frac{2}{\\pi}"
Answer:
"\\lim\\limits_{x\\rightarrow0}(\\frac{1}{x} -\\frac{2}{ln(1+2x)})=-1"
"\\lim\\limits_{x\\rightarrow0}(e^x+x)^{\\frac{1}{x}}=e^2"
"\\lim\\limits_{x\\rightarrow1+}lnx*tan(\\frac{\\pi*x}{2})=-\\frac{2}{\\pi}"
Comments
Leave a comment