"r(t) = (\\displaystyle e^t\\cos{t}, e^t\\sin{t}, e^t), \\hspace{0.2cm} \\textsf{for}\\hspace{0.1cm} 0\\leq t \\leq\\ln(4)\\\\\n\nr(t)\\hspace{0.1cm}\\textsf{is a parametric equation of}\\hspace{0.1cm} x, y\\hspace{0.1cm} \\textsf{and}\\hspace{0.1cm} z. \\\\\n\nr(t) = (x(t), y(t), z(t)) \\Rightarrow x(t) = e^t\\cos{t}, y(t)=e^t\\sin{t}, z(t)=e^t\\\\\n\n\\textsf{Length of the curve \\textit{(s)}} = \\int_{s_1}^{s_2} \\sqrt{\\left(\\frac{\\mathrm{d}x}{\\mathrm{d}t}\\right)^2 + \\left(\\frac{\\mathrm{d}y}{\\mathrm{d}t}\\right)^2 + \\left(\\frac{\\mathrm{d}z}{\\mathrm{d}t}\\right)^2 }\\hspace{0.1cm} \\mathrm{d}t\\\\\n\n\n\nx(t) = e^t\\cos{t}, y(t)=e^t\\sin{t}, z(t)=e^t\\\\\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = e^t(\\cos{t} -\\sin{t}), \\frac{\\mathrm{d}y}{\\mathrm{d}t} =e^t(\\cos{t} + \\sin{t}), \\frac{\\mathrm{d}z}{\\mathrm{d}t} = e^t\\\\\n\n\n\n\ns = \\int_{0}^{\\ln(4)}\\sqrt{e^{2t}(\\cos{t} -\\sin{t})^2 + e^{2t}(\\cos{t} -\\sin{t})^2+ e^{2t}}\\hspace{0.1cm} \\mathrm{d}t\\\\\n\n\ne^{2t}(\\cos{t} -\\sin{t})^2 + e^{2t}(\\cos{t} -\\sin{t})^2+ e^{2t} \\\\= e^{2t}((\\cos{t} -\\sin{t})^2 + (\\cos{t} -\\sin{t})^2+ 1) \\\\= e^{2t}(\\cos^2{t} + \\sin^2{t} - 2\\cos{t}\\sin{t} + cos^2{t} + \\sin^2{t} + 2\\cos{t}\\sin{t} + 1)\\\\ = e^{2t}(1 + 1 + 1) = 3e^{2t}\\\\\n\n\n\\therefore s = \\int_{0}^{\\ln(4)} \\sqrt{e^{2t}(1 + 1 + 1)}\\hspace{0.1cm} \\mathrm{d}t\\\\\n\ns = \\int_{0}^{\\ln(4)} \\sqrt{3}\\sqrt{e^{2t}} \\hspace{0.1cm} \\mathrm{d}t\\\\\n\n\ns = \\int_{0}^{\\ln(4)} \\sqrt{3} e^t \\hspace{0.1cm} \\mathrm{d}t\\\\\n\ns = \\sqrt{3}e^t \\vert_{0}^{\\ln(4)} = \\sqrt{3}(e^{\\ln(4)} - e^{(0)})= \\sqrt{3}(4 - 1) = 3\\sqrt{3}\\\\\n\n\n\\therefore \\textsf{The length of the curve}\\hspace{0.1cm} r(t) = (e^t\\cos{t}, e^t\\sin{t}, e^t), \\hspace{0.2cm} \\textsf{for}\\hspace{0.1cm} 0\\leq t \\leq \\ln(4)\\hspace{0.1cm}\\\\\\textsf{is}\\hspace{0.1cm} 3\\sqrt{3}\\hspace{0.1cm}\\textsf{units} \\approx 5.1962 \\hspace{0.1cm}\\textsf{units}"
Comments
Leave a comment