"\\mathbf{Let\\;f(x)=(x-1)^2(x+1)^3,\\;then\\;derivative \\;of\\;f(x)\\;is\\;given\\;by-}"
"\\mathbf{\\dfrac{d}{dx}f(x)=f'(x)=\\dfrac{d}{dx}\\big((x-1)^2(x+1)^3\\big)}"
"\\mathbf{=(x-1)^2\\dfrac{d}{dx}\\big((x+1)^3\\big)+(x+1)^3\\dfrac{d}{dx}\\big((x-1)^2\\big)}"
"\\mathbf{=(x-1)^2.3.(x+1)^{3-1}+(x+1)^3.2.(x-1)^{2-1}}"
"\\mathbf{=3(x-1)^2(x+1)^2+2(x+1)^3(x-1)}"
"=\\mathbf{(x-1)(x+1)^2[3(x-1)+2(x+1)]}"
"\\mathbf{=(x-1)(x+1)^2[5x-1]}"
"\\textbf{Now, the derivative (slope) is zero when f'(x)=0 ,i.e.,}"
"\\textbf{when x=1,\\;x=-1,\\;x= 1\/5}"
"\\textbf{We\\;know\\;that\\;-}"
Second Derivative Test-
When a function's slope is zero at x, and the second derivative at x is:
-less than 0, it is a local maximum
-greater than 0, it is a local minimum
-equal to 0, then the test fails (there may be other ways of finding out though)
Here the second derivative of f(x) is-
"\\mathbf{f''(x)=4(5x^3+3x^2-3x-1)}"
"\\mathbf{At \\;x=1\\;, f''(1)=4(5+3-3-1)=4*4=16>0}"
"\\mathbf{\\implies there\\;is\\;a\\;local\\;minimum\\;at\\;x=1\\;and\\;at\\;x=1\\;minimum}"
"\\mathbf{value\\;of\\;the\\;function\\;is-f(1)=(1-1)^2(1+1)^3=0.}"
"\\mathbf{At \\;x=-1\\;, f''(-1)=4(-5+3+3-1)=4*0=0}"
"\\mathbf{\\implies the\\;test\\;fails\\;at\\;x=-1}"
"\\mathbf{\\implies there\\;is\\;a\\;saddle\\;point\\;at\\;x=-1,i.e.}"
"\\mathbf{\\implies there\\;is\\;neither\\;a\\;maximum\\;nor\\;a\\;minimum\\;at\\;x=-1.}"
"\\mathbf{At \\;x=1\/5\\;, f''(1\/5)=4(5(1\/5)^3+3(1\/5)^2-3(1\/5)-1)}"
"\\mathbf{=4*(-36\/25)=(-144\/25)<0}"
"\\mathbf{\\implies there\\;is\\;a\\;local\\;maximum\\;at\\;x=1\/5\\;and\\;at\\;x=1\/5\\;maximum}"
"\\mathbf{value\\;of\\;the\\;function\\;is-f(1\/5)=((1\/5)-1)^2((1\/5)+1)^3}"
"\\mathbf{=3456\/3125}"
Comments
Leave a comment