Letf(x)=(x−1)2(x+1)3,thenderivativeoff(x)isgivenby−
dxdf(x)=f′(x)=dxd((x−1)2(x+1)3)
=(x−1)2dxd((x+1)3)+(x+1)3dxd((x−1)2)
=(x−1)2.3.(x+1)3−1+(x+1)3.2.(x−1)2−1
=3(x−1)2(x+1)2+2(x+1)3(x−1)
=(x−1)(x+1)2[3(x−1)+2(x+1)]
=(x−1)(x+1)2[5x−1]
Now, the derivative (slope) is zero when f’(x)=0 ,i.e.,
when x=1,x=-1,x= 1/5
Weknowthat-
Second Derivative Test-
When a function's slope is zero at x, and the second derivative at x is:
-less than 0, it is a local maximum
-greater than 0, it is a local minimum
-equal to 0, then the test fails (there may be other ways of finding out though)
Here the second derivative of f(x) is-
f′′(x)=4(5x3+3x2−3x−1)
Atx=1,f′′(1)=4(5+3−3−1)=4∗4=16>0
⟹thereisalocalminimumatx=1andatx=1minimum
valueofthefunctionis−f(1)=(1−1)2(1+1)3=0.
Atx=−1,f′′(−1)=4(−5+3+3−1)=4∗0=0
⟹thetestfailsatx=−1
⟹thereisasaddlepointatx=−1,i.e.
⟹thereisneitheramaximumnoraminimumatx=−1.
Atx=1/5,f′′(1/5)=4(5(1/5)3+3(1/5)2−3(1/5)−1)
=4∗(−36/25)=(−144/25)<0
⟹thereisalocalmaximumatx=1/5andatx=1/5maximum
valueofthefunctionis−f(1/5)=((1/5)−1)2((1/5)+1)3
=3456/3125
Comments
Leave a comment