Answer to Question #134471 in Calculus for Tarun Joshua Daniel

Question #134471
(x-1)^2 (x+1)^3
Find the maximum and minimum values
1
Expert's answer
2020-09-22T16:26:08-0400

Let  f(x)=(x1)2(x+1)3,  then  derivative  of  f(x)  is  given  by\mathbf{Let\;f(x)=(x-1)^2(x+1)^3,\;then\;derivative \;of\;f(x)\;is\;given\;by-}


ddxf(x)=f(x)=ddx((x1)2(x+1)3)\mathbf{\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\big((x-1)^2(x+1)^3\big)}


=(x1)2ddx((x+1)3)+(x+1)3ddx((x1)2)\mathbf{=(x-1)^2\dfrac{d}{dx}\big((x+1)^3\big)+(x+1)^3\dfrac{d}{dx}\big((x-1)^2\big)}


=(x1)2.3.(x+1)31+(x+1)3.2.(x1)21\mathbf{=(x-1)^2.3.(x+1)^{3-1}+(x+1)^3.2.(x-1)^{2-1}}


=3(x1)2(x+1)2+2(x+1)3(x1)\mathbf{=3(x-1)^2(x+1)^2+2(x+1)^3(x-1)}


=(x1)(x+1)2[3(x1)+2(x+1)]=\mathbf{(x-1)(x+1)^2[3(x-1)+2(x+1)]}


=(x1)(x+1)2[5x1]\mathbf{=(x-1)(x+1)^2[5x-1]}


Now, the derivative (slope) is zero when f’(x)=0 ,i.e.,\textbf{Now, the derivative (slope) is zero when f'(x)=0 ,i.e.,}

when x=1,  x=-1,  x= 1/5\textbf{when x=1,\;x=-1,\;x= 1/5}


We  know  that  -\textbf{We\;know\;that\;-}


Second Derivative Test-


When a function's slope is zero at x, and the second derivative at x is:


-less than 0, it is a local maximum

-greater than 0, it is a local minimum

-equal to 0, then the test fails (there may be other ways of finding out though)


Here the second derivative of f(x) is-


f(x)=4(5x3+3x23x1)\mathbf{f''(x)=4(5x^3+3x^2-3x-1)}


At  x=1  ,f(1)=4(5+331)=44=16>0\mathbf{At \;x=1\;, f''(1)=4(5+3-3-1)=4*4=16>0}

    there  is  a  local  minimum  at  x=1  and  at  x=1  minimum\mathbf{\implies there\;is\;a\;local\;minimum\;at\;x=1\;and\;at\;x=1\;minimum}

value  of  the  function  isf(1)=(11)2(1+1)3=0.\mathbf{value\;of\;the\;function\;is-f(1)=(1-1)^2(1+1)^3=0.}


At  x=1  ,f(1)=4(5+3+31)=40=0\mathbf{At \;x=-1\;, f''(-1)=4(-5+3+3-1)=4*0=0}

    the  test  fails  at  x=1\mathbf{\implies the\;test\;fails\;at\;x=-1}

    there  is  a  saddle  point  at  x=1,i.e.\mathbf{\implies there\;is\;a\;saddle\;point\;at\;x=-1,i.e.}

    there  is  neither  a  maximum  nor  a  minimum  at  x=1.\mathbf{\implies there\;is\;neither\;a\;maximum\;nor\;a\;minimum\;at\;x=-1.}


At  x=1/5  ,f(1/5)=4(5(1/5)3+3(1/5)23(1/5)1)\mathbf{At \;x=1/5\;, f''(1/5)=4(5(1/5)^3+3(1/5)^2-3(1/5)-1)}

=4(36/25)=(144/25)<0\mathbf{=4*(-36/25)=(-144/25)<0}

    there  is  a  local  maximum  at  x=1/5  and  at  x=1/5  maximum\mathbf{\implies there\;is\;a\;local\;maximum\;at\;x=1/5\;and\;at\;x=1/5\;maximum}

value  of  the  function  isf(1/5)=((1/5)1)2((1/5)+1)3\mathbf{value\;of\;the\;function\;is-f(1/5)=((1/5)-1)^2((1/5)+1)^3}

=3456/3125\mathbf{=3456/3125}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment