limh→0(6(a+h)−6ah)=limh→0((6(a+h)−6a)(6(a+h)+6a)h(6(a+h)+6a))=\displaystyle \lim_{h \to 0} (\frac{\sqrt{6(a+h)}- \sqrt{6a}}{h}) = \lim_{h \to 0} (\frac{(\sqrt{6(a+h)}- \sqrt{6a})(\sqrt{6(a+h)}+ \sqrt{6a})}{h (\sqrt{6(a+h)}+ \sqrt{6a})}) =h→0lim(h6(a+h)−6a)=h→0lim(h(6(a+h)+6a)(6(a+h)−6a)(6(a+h)+6a))=
=limh→0(6(a+h)−6ah(6(a+h)+6a))=limh→0(6hh(6(a+h)+6a))=\displaystyle= \lim_{h \to 0} (\frac{6(a+h)- 6a}{h (\sqrt{6(a+h)}+ \sqrt{6a})}) = \lim_{h \to 0} (\frac{6h}{h (\sqrt{6(a+h)}+ \sqrt{6a})}) ==h→0lim(h(6(a+h)+6a)6(a+h)−6a)=h→0lim(h(6(a+h)+6a)6h)=
=limh→0(6(6(a+h)+6a))=626a=62a=32a= \displaystyle \lim_{h \to 0} (\frac{6}{ (\sqrt{6(a+h)}+ \sqrt{6a})}) = \frac{6}{2\sqrt{6a}} = \frac{\sqrt{6}}{2 \sqrt{a}} =\sqrt{ \frac{3}{2a}}=h→0lim((6(a+h)+6a)6)=26a6=2a6=2a3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments