"a(t) = t\\textbf{i} + 9\\textbf{j} \\\\\n\n\\frac{\\mathrm{d}v}{\\mathrm{d}t} = t\\textbf{i} + 9\\textbf{j} \\\\\n\n\\textsf{Separating variables, we have,}\\\\\n\n\n\\mathrm{d}v = (t\\textbf{i} + 9\\textbf{j})\\mathrm{d}t\\\\\n\n\\int \\mathrm{d}v = \\int(t\\textbf{i} + 9\\textbf{j})\\mathrm{d}t\\\\\n\nv = \\int t \\mathrm{d}t\\textbf{i} + \\int9\\mathrm{d}t\\textbf{j}\\\\\n\nv(t) = \\left(\\frac{t^2}{2} + C_1\\right)\\textbf{i} + (9t + C_2)\\textbf{j}\\\\\n\n\nv(t) = \\frac{t^2}{2}\\textbf{i} + 9t\\textbf{j} + (C_1\\textbf{i} + C_2\\textbf{j})\\\\\n\n\n\n\nv(0) = C_1\\textbf{i} + C_2\\textbf{j}\\\\\n\n-\\textbf{i} + 3\\textbf{j} = C_1\\textbf{i} + C_2\\textbf{j}\\\\\n\n\\Rightarrow C_1 = -1, C_2=3\\\\\n\n\n\\therefore v(t) = \\frac{t^2}{2}\\textbf{i} + 9t\\textbf{j} - \\textbf{i} + 3\\textbf{j}\\\\\n\n\nv(t) = \\left(\\frac{t^2}{2} - 1\\right)\\textbf{i} + (9t + 3)\\textbf{j}\\\\\n\n\n\n\\frac{\\mathrm{d}r}{\\mathrm{d}t} = \\left(\\frac{t^2}{2} - 1\\right)\\textbf{i} + (9t + 3)\\textbf{j}\\\\\n\n\n\\mathrm{d}r = \\left(\\frac{t^2}{2} - 1\\right)\\textbf{i} \\mathrm{d}t+(9t + 3)\\textbf{j}\\mathrm{d}t\\\\\n\n\n\\int\\mathrm{d}r = \\int\\left(\\frac{t^2}{2} - 1\\right)\\mathrm{d}t\\textbf{i} + \\int(9t + 3)\\mathrm{d}t\\textbf{j}\\\\\n\nr(t) = \\left(\\frac{t^3}{6} - t + B_1\\right)\\textbf{i} + \\left(\\frac{9t^2}{2} + 3t + B_2\\right)\\textbf{j}\\\\\n\n\nr(0) = B_1\\textbf{i} + B_2\\textbf{j}\\\\\n\n\n0\\textbf{i} + 0\\textbf{j}= B_1\\textbf{i} + B_2\\textbf{j}\\\\\n\n\n\\Rightarrow B_1 = B_2 = 0\\\\\n\n\n\\therefore r(t) = \\left(\\frac{t^3}{6} - t\\right)\\textbf{i} + \\left(\\frac{9t^2}{2} + 3t\\right)\\textbf{j} \\\\\n\n\\textsf{Writing} \\hspace{0.1cm} v(t) \\hspace{0.1cm} \\textsf{and} \\hspace{0.1cm} r(t) \\\\\\textsf{as column vectors}\\\\\n\n\nr(t) = \\left(\\frac{t^3}{6} - t, \\frac{9t^2}{2} + 3t\\right) \\hspace{0.1cm} \\&\\\\\nv(t) = \\left(\\frac{t^2}{2} - 1,9t + 3\\right)"
Comments
Leave a comment