a(t)=ti+9jdtdv=ti+9jSeparating variables, we have,dv=(ti+9j)dt∫dv=∫(ti+9j)dtv=∫tdti+∫9dtjv(t)=(2t2+C1)i+(9t+C2)jv(t)=2t2i+9tj+(C1i+C2j)v(0)=C1i+C2j−i+3j=C1i+C2j⇒C1=−1,C2=3∴v(t)=2t2i+9tj−i+3jv(t)=(2t2−1)i+(9t+3)jdtdr=(2t2−1)i+(9t+3)jdr=(2t2−1)idt+(9t+3)jdt∫dr=∫(2t2−1)dti+∫(9t+3)dtjr(t)=(6t3−t+B1)i+(29t2+3t+B2)jr(0)=B1i+B2j0i+0j=B1i+B2j⇒B1=B2=0∴r(t)=(6t3−t)i+(29t2+3t)jWritingv(t)andr(t)as column vectorsr(t)=(6t3−t,29t2+3t)&v(t)=(2t2−1,9t+3)
Comments