1)
a) lim t → 0 ( e − 3 t i ⃗ + t 2 s i n 2 t j ⃗ + c o s 2 t ∗ k ⃗ ) = \lim\limits_{t\rarr{0}}(e^{-3t}\vec{i}+\frac{t^2}{sin^2t}\vec{j}+cos2t*\vec{k})= t → 0 lim ( e − 3 t i + s i n 2 t t 2 j + cos 2 t ∗ k ) =
= i ⃗ ∗ lim t → 0 e − 3 t + j ⃗ ∗ lim t → 0 t 2 s i n 2 t + k ⃗ ∗ lim t → 0 c o s 2 t = i ⃗ ∗ 1 + j ⃗ ∗ 1 + k ⃗ ∗ 1 = =\vec{i}*\lim\limits_{t\rarr{0}}e^{-3t}+\vec{j}*\lim\limits_{t\rarr{0}}\frac{t^2}{sin^2t}+\vec{k}*\lim\limits_{t\rarr{0}}cos2t=\vec{i}*1+\vec{j}*1+\vec{k}*1= = i ∗ t → 0 lim e − 3 t + j ∗ t → 0 lim s i n 2 t t 2 + k ∗ t → 0 lim cos 2 t = i ∗ 1 + j ∗ 1 + k ∗ 1 =
= i ⃗ + j ⃗ + k ⃗ =\vec{i}+\vec{j}+\vec{k} = i + j + k
b)
lim t → 1 ( t 2 − t t − 1 i ⃗ + t + 8 j ⃗ + s i n π t ln t k ⃗ ) = \lim\limits_{t\rarr{1}}({\frac{t^2-t}{t-1}}\vec{i}+\sqrt{t+8}\vec{j}+\frac{sin\pi{t}}{\ln{t}}\vec{k})= t → 1 lim ( t − 1 t 2 − t i + t + 8 j + l n t s inπ t k ) =
= i ⃗ ∗ lim t → 1 t ( t − 1 ) t − 1 + j ⃗ ∗ lim t → 1 t + 8 + k ⃗ ∗ lim t → 1 s i n π t ln t = =\vec{i}*\lim\limits_{t\rarr{1}}\frac{t(t-1)}{t-1}+\vec{j}*\lim\limits_{t\rarr{1}}\sqrt{t+8}+\vec{k}*\lim\limits_{t\rarr{1}}\frac{sin\pi{t}}{\ln{t}}= = i ∗ t → 1 lim t − 1 t ( t − 1 ) + j ∗ t → 1 lim t + 8 + k ∗ t → 1 lim l n t s inπ t =
= i ⃗ ∗ 1 + j ⃗ ∗ 3 − k ⃗ ∗ π =\vec{i}*1+\vec{j}*3-\vec{k}*\pi = i ∗ 1 + j ∗ 3 − k ∗ π
here lim t → 1 sin π t ln t = lim t → 1 ( sin π t ) ′ ( ln t ) ′ = lim t → 1 π ∗ cos π t 1 t = − π \lim\limits_{t\rarr{1}}\frac{\sin{\pi{t}}}{\ln{t}}=\lim\limits_{t\rarr{1}}\frac{(\sin{\pi{t}})'}{(\ln{t})'}=\lim\limits_{t\rarr{1}}\frac{\pi*{\cos{\pi{t}}}}{\frac{1}{t}}=-\pi t → 1 lim l n t s i n π t = t → 1 lim ( l n t ) ′ ( s i n π t ) ′ = t → 1 lim t 1 π ∗ c o s π t = − π
2)
The vector equation of a segment is
r ⃗ = r 0 ⃗ + a ⃗ ∗ t \vec{r}=\vec{r_{0}}+\vec{a}*t r = r 0 + a ∗ t , here 0 ≤ t ≤ 1 0\le{t}\le{1} 0 ≤ t ≤ 1 , r 0 ⃗ = − i ⃗ + 2 j ⃗ + 2 k ⃗ \vec{r_0}=-\vec{i}+2\vec{j}+2\vec{k} r 0 = − i + 2 j + 2 k
a ⃗ = i ⃗ ∗ ( − 3 − ( − 1 ) ) + j ⃗ ∗ ( 5 − 2 ) + k ⃗ ∗ ( 1 − 2 ) = − 2 i ⃗ + 3 j ⃗ − k ⃗ \vec{a}=\vec{i}*(-3-(-1))+\vec{j}*(5-2)+\vec{k}*(1-2)=-2\vec{i}+3\vec{j}-\vec{k} a = i ∗ ( − 3 − ( − 1 )) + j ∗ ( 5 − 2 ) + k ∗ ( 1 − 2 ) = − 2 i + 3 j − k
parametric equation is
Comments