1)
a) t→0lim(e−3ti+sin2tt2j+cos2t∗k)=
=i∗t→0lime−3t+j∗t→0limsin2tt2+k∗t→0limcos2t=i∗1+j∗1+k∗1=
=i+j+k
b)
t→1lim(t−1t2−ti+t+8j+lntsinπtk)=
=i∗t→1limt−1t(t−1)+j∗t→1limt+8+k∗t→1limlntsinπt=
=i∗1+j∗3−k∗π
here t→1limlntsinπt=t→1lim(lnt)′(sinπt)′=t→1limt1π∗cosπt=−π
2)
The vector equation of a segment is
r=r0+a∗t , here 0≤t≤1 , r0=−i+2j+2k
a=i∗(−3−(−1))+j∗(5−2)+k∗(1−2)=−2i+3j−k
parametric equation is
Comments