Question #133027
1)Find the limit.
a:)lim t->0 (e^(-3t)i+(t^2/sin^2 t)j|+ cos 2tk)
b:)lim t->1((t^2-t)/(t-1)i+sqrt(t+ 8)j+(sin pi t)/(ln t) k)

2) . Find a vector equation and parametric equations for the line segment that joins P(-1,2,2) and Q(-3,5,1).
1
Expert's answer
2020-09-16T19:42:44-0400

1)

a) limt0(e3ti+t2sin2tj+cos2tk)=\lim\limits_{t\rarr{0}}(e^{-3t}\vec{i}+\frac{t^2}{sin^2t}\vec{j}+cos2t*\vec{k})=

=ilimt0e3t+jlimt0t2sin2t+klimt0cos2t=i1+j1+k1==\vec{i}*\lim\limits_{t\rarr{0}}e^{-3t}+\vec{j}*\lim\limits_{t\rarr{0}}\frac{t^2}{sin^2t}+\vec{k}*\lim\limits_{t\rarr{0}}cos2t=\vec{i}*1+\vec{j}*1+\vec{k}*1=

=i+j+k=\vec{i}+\vec{j}+\vec{k}

b)

limt1(t2tt1i+t+8j+sinπtlntk)=\lim\limits_{t\rarr{1}}({\frac{t^2-t}{t-1}}\vec{i}+\sqrt{t+8}\vec{j}+\frac{sin\pi{t}}{\ln{t}}\vec{k})=

=ilimt1t(t1)t1+jlimt1t+8+klimt1sinπtlnt==\vec{i}*\lim\limits_{t\rarr{1}}\frac{t(t-1)}{t-1}+\vec{j}*\lim\limits_{t\rarr{1}}\sqrt{t+8}+\vec{k}*\lim\limits_{t\rarr{1}}\frac{sin\pi{t}}{\ln{t}}=

=i1+j3kπ=\vec{i}*1+\vec{j}*3-\vec{k}*\pi

here limt1sinπtlnt=limt1(sinπt)(lnt)=limt1πcosπt1t=π\lim\limits_{t\rarr{1}}\frac{\sin{\pi{t}}}{\ln{t}}=\lim\limits_{t\rarr{1}}\frac{(\sin{\pi{t}})'}{(\ln{t})'}=\lim\limits_{t\rarr{1}}\frac{\pi*{\cos{\pi{t}}}}{\frac{1}{t}}=-\pi

2)

The vector equation of a segment is

r=r0+at\vec{r}=\vec{r_{0}}+\vec{a}*t , here 0t10\le{t}\le{1} , r0=i+2j+2k\vec{r_0}=-\vec{i}+2\vec{j}+2\vec{k}

a=i(3(1))+j(52)+k(12)=2i+3jk\vec{a}=\vec{i}*(-3-(-1))+\vec{j}*(5-2)+\vec{k}*(1-2)=-2\vec{i}+3\vec{j}-\vec{k}

parametric equation is

x=-1-2t, y=2+3t, z=2-t, 0t10\le{t}\le{1}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS