1)
a) "\\lim\\limits_{t\\rarr{0}}(e^{-3t}\\vec{i}+\\frac{t^2}{sin^2t}\\vec{j}+cos2t*\\vec{k})="
"=\\vec{i}*\\lim\\limits_{t\\rarr{0}}e^{-3t}+\\vec{j}*\\lim\\limits_{t\\rarr{0}}\\frac{t^2}{sin^2t}+\\vec{k}*\\lim\\limits_{t\\rarr{0}}cos2t=\\vec{i}*1+\\vec{j}*1+\\vec{k}*1="
"=\\vec{i}+\\vec{j}+\\vec{k}"
b)
"\\lim\\limits_{t\\rarr{1}}({\\frac{t^2-t}{t-1}}\\vec{i}+\\sqrt{t+8}\\vec{j}+\\frac{sin\\pi{t}}{\\ln{t}}\\vec{k})="
"=\\vec{i}*\\lim\\limits_{t\\rarr{1}}\\frac{t(t-1)}{t-1}+\\vec{j}*\\lim\\limits_{t\\rarr{1}}\\sqrt{t+8}+\\vec{k}*\\lim\\limits_{t\\rarr{1}}\\frac{sin\\pi{t}}{\\ln{t}}="
"=\\vec{i}*1+\\vec{j}*3-\\vec{k}*\\pi"
here "\\lim\\limits_{t\\rarr{1}}\\frac{\\sin{\\pi{t}}}{\\ln{t}}=\\lim\\limits_{t\\rarr{1}}\\frac{(\\sin{\\pi{t}})'}{(\\ln{t})'}=\\lim\\limits_{t\\rarr{1}}\\frac{\\pi*{\\cos{\\pi{t}}}}{\\frac{1}{t}}=-\\pi"
2)
The vector equation of a segment is
"\\vec{r}=\\vec{r_{0}}+\\vec{a}*t" , here "0\\le{t}\\le{1}" , "\\vec{r_0}=-\\vec{i}+2\\vec{j}+2\\vec{k}"
"\\vec{a}=\\vec{i}*(-3-(-1))+\\vec{j}*(5-2)+\\vec{k}*(1-2)=-2\\vec{i}+3\\vec{j}-\\vec{k}"
parametric equation is
Comments
Leave a comment