22x⋅5x=4x⋅5x=20x2^{2x}\cdot 5^x=4^x\cdot 5^x=20^x22x⋅5x=4x⋅5x=20x
∫22x⋅5xdx=∫20xdx=∫exln20dx=\int 2^{2x}\cdot 5^xdx=\int 20^xdx=\int e^{x\ln 20}dx=∫22x⋅5xdx=∫20xdx=∫exln20dx=
=1ln20∫exln20d(xln20)=1ln20exln20+C==\frac{1}{\ln 20}\int e^{x\ln 20}d(x\ln 20)=\frac{1}{\ln 20}e^{x\ln 20}+C==ln201∫exln20d(xln20)=ln201exln20+C=
=1ln2020x+C=\frac{1}{\ln 20}20^x+C=ln20120x+C
Answer: 1ln2020x+C\frac{1}{\ln 20}20^x+Cln20120x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments