∫3x+1dx=∫e(x+1)ln3dx=∫e(x+1)ln3d(x+1)=\int 3^{x+1}dx=\int e^{(x+1)\ln 3}dx=\int e^{(x+1)\ln 3}d(x+1)=∫3x+1dx=∫e(x+1)ln3dx=∫e(x+1)ln3d(x+1)=
=1ln3∫e(x+1)ln3d((x+1)ln3)=1ln3e(x+1)ln3+C==\frac{1}{\ln 3}\int e^{(x+1)\ln 3}d((x+1)\ln 3)=\frac{1}{\ln 3}e^{(x+1)\ln 3}+C==ln31∫e(x+1)ln3d((x+1)ln3)=ln31e(x+1)ln3+C=
=1ln33x+1+C=\frac{1}{\ln 3}3^{x+1}+C=ln313x+1+C
Answer: 1ln33x+1+C\frac{1}{\ln 3}3^{x+1}+Cln313x+1+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments