1)
a) limt→0(e−3ti+sin2tt2j+cos2tk)=(limt→0e−3t)i+(limt→0sin2tt2)j+(limt→0cos2t)k.
Now we can find each limit:
limt→0(e−3t)=e−3⋅0=e0=1.
To find the second limit we can use L'Hopital's rule twice:
limt→0(sin2tt2)=[00]=limt→0((sin2t)′(t2)′)=limt→0(2sintcost2t)=limt→0(sin2t2t)=[00]=1.
limt→0(cos2t)=cos(2⋅0)=cos0=1.
Finally:
limt→0(e−3ti+sin2tt2j+cos2tk)=1i+1j+1k=i+j+k.
b) limt→1(t−1t2−ti+t+8j+lntsinπtk)=(limt→1t−1t2−t)i+(limt→1t+8)j+(limt→1lntsinπt)k.
Now we can find each limit:
limt→1(t−1t2−t)=[00]=limt→1(t−1t(t−1))=limt→1t=1.
limt→1t+8=1+8=9=3.
limt→1lntsinπt=[00]=limt→1(lnt)′(sinπt)′=limt→1t1πcosπt=limt→1(πtcosπt)=
=π⋅1⋅cos(π⋅1)=−π.
Finally:
limt→1(t−1t2−ti+t+8j+lntsinπtk)=1i+3j+πk=i+3j−πk.
2)
The vector equation of the line segment is given by r(t)=(1−t)r0+tr1, where 0≤t≤1 and r0 and r1 are the vector equivalents of the endpoints:
P(−1,2,2) becomes r0=⟨−1,2,2⟩,
Q(−3,5,1) becomes r1=⟨−3,5,1⟩.
Plug r0 and r2 into the vector formula:
r(t)=(1−t)⟨−1,2,2⟩+t⟨−3,5,1⟩=⟨−1+t−3t,2−2t+5t,2−2t+t⟩=
=⟨−1−2t,2+3t,2−t⟩.
We have the vector equation: r(t)=⟨−1−2t,2+3t,2−t⟩,0≤t≤1, or r(t)=(−1−2t)i+(2+3t)j+(2−t)k,0≤t≤1.
To get the parametric equations of the line segment, we have to take the coefficients by i,j,k:
⎩⎨⎧x=−1−2t,y=2+3t,z=2−t, 0≤t≤1.
Comments