Question #133026
1)Find the limit.
a:)lim t->0 (e^(-3t)i+(t^2/sin^2 t)j|+ cos 2tk)
b:)lim t->1((t^2-t)/(t-1)i+sqrt(t+ 8)j+(sin pi t)/(ln t) k)

2) . Find a vector equation and parametric equations for the line segment that joins P(-1,2,2) and Q(-3,5,1).
1
Expert's answer
2020-09-15T17:28:35-0400

1)

a) limt0(e3ti+t2sin2tj+cos2tk)=(limt0e3t)i+(limt0t2sin2t)j+(limt0cos2t)k.lim_{ t \to 0} (e^{-3t}i+\frac{t^2}{sin^2 t}j+ cos 2tk)=(lim_{ t \to 0} e^{-3t})i+(lim_{ t \to 0}\frac{t^2}{sin^2 t})j+ (lim_{ t \to 0} cos 2t)k.

Now we can find each limit:

limt0(e3t)=e30=e0=1lim_{ t \to 0} (e^{-3t})=e^{-3\cdot 0}=e^0=1.

To find the second limit we can use L'Hopital's rule twice:

limt0(t2sin2t)=[00]=limt0((t2)(sin2t))=limt0(2t2sintcost)=limt0(2tsin2t)=[00]=1lim_{ t \to 0}(\frac{t^2}{sin^2 t})=[\frac{0}{0}]=lim_{ t \to 0}(\frac{(t^2)\prime}{(sin^2 t)\prime})=lim_{ t \to 0}(\frac{2t}{2sint cos t})=lim_{ t \to 0}(\frac{2t}{sin2t})=[\frac{0}{0}]=1.

limt0(cos2t)=cos(20)=cos0=1.lim_{ t \to 0} (cos 2t)=cos(2\cdot 0)=cos0=1.

Finally:

limt0(e3ti+t2sin2tj+cos2tk)=1i+1j+1k=i+j+k.lim_{ t \to 0} (e^{-3t}i+\frac{t^2}{sin^2 t}j+ cos 2tk)=1i+1j+1k=i+j+k.


b) limt1(t2tt1i+t+8j+sinπtlntk)=(limt1t2tt1)i+(limt1t+8)j+(limt1sinπtlnt)k.lim_{t \to 1}(\frac{t^2-t}{t-1}i+\sqrt{t+ 8}j+\frac{sin \pi t}{ln t} k)=(lim_{t \to 1}\frac{t^2-t}{t-1})i+(lim_{t \to 1}\sqrt{t+ 8})j+(lim_{t \to 1}\frac{sin \pi t}{ln t}) k.

Now we can find each limit:

limt1(t2tt1)=[00]=limt1(t(t1)t1)=limt1t=1.lim_{t \to 1}(\frac{t^2-t}{t-1})=[\frac{0}{0}]=lim_{t \to 1}(\frac{t(t-1)}{t-1})=lim_{t \to 1}t=1.

limt1t+8=1+8=9=3.lim_{t \to 1}\sqrt{t+ 8}=\sqrt{1+ 8}=\sqrt{9}=3.

limt1sinπtlnt=[00]=limt1(sinπt)(lnt)=limt1πcosπt1t=limt1(πtcosπt)=lim_{t \to 1}\frac{sin \pi t}{ln t}=[\frac{0}{0}]=lim_{t \to 1}\frac{(sin \pi t)\prime}{(ln t)\prime}=lim_{t \to 1}\frac{\pi cos \pi t}{\frac{1}{t}}=lim_{t \to 1}(\pi t cos \pi t)=

=π1cos(π1)=π.=\pi \cdot 1 \cdot cos(\pi \cdot 1)=- \pi.

Finally:

limt1(t2tt1i+t+8j+sinπtlntk)=1i+3j+πk=i+3jπk.lim_{t \to 1}(\frac{t^2-t}{t-1}i+\sqrt{t+ 8}j+\frac{sin \pi t}{ln t} k)=1i+3j+\pi k=i+3j-\pi k.


2)

The vector equation of the line segment is given by r(t)=(1t)r0+tr1,r(t)=(1-t)r_0+tr_1, where 0t10\leq t\leq 1 and r0r_0 and r1r_1 are the vector equivalents of the endpoints:

P(1,2,2)P(-1,2,2) becomes r0=1,2,2,r_0=⟨-1,2,2⟩,

Q(3,5,1)Q(-3,5,1) becomes r1=3,5,1.r_1=⟨-3,5,1⟩.

Plug r0r_0 and r2r_2 into the vector formula:

r(t)=(1t)1,2,2+t3,5,1=1+t3t,22t+5t,22t+t=r(t)=(1-t)⟨-1,2,2⟩+t⟨-3,5,1⟩=⟨-1+t-3t,2-2t+5t,2-2t+t⟩=

=12t,2+3t,2t=⟨-1-2t,2+3t,2-t⟩.

We have the vector equation: r(t)=12t,2+3t,2t,0t1,r(t)=⟨-1-2t,2+3t,2-t⟩, 0 \leq t \leq 1, or r(t)=(12t)i+(2+3t)j+(2t)k,0t1.r(t)=(-1-2t)i+(2+3t)j+(2-t)k, 0 \leq t \leq 1.

To get the parametric equations of the line segment, we have to take the coefficients by i,j,ki, j, k:

{x=12t,y=2+3t,z=2t,\begin{cases} x=-1-2t, \\ y=2+3t, \\ z=2-t, \end{cases} 0t1.0 \leq t \leq 1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS