1)
a) l i m t → 0 ( e − 3 t i + t 2 s i n 2 t j + c o s 2 t k ) = ( l i m t → 0 e − 3 t ) i + ( l i m t → 0 t 2 s i n 2 t ) j + ( l i m t → 0 c o s 2 t ) k . lim_{ t \to 0} (e^{-3t}i+\frac{t^2}{sin^2 t}j+ cos 2tk)=(lim_{ t \to 0} e^{-3t})i+(lim_{ t \to 0}\frac{t^2}{sin^2 t})j+ (lim_{ t \to 0} cos 2t)k. l i m t → 0 ( e − 3 t i + s i n 2 t t 2 j + cos 2 t k ) = ( l i m t → 0 e − 3 t ) i + ( l i m t → 0 s i n 2 t t 2 ) j + ( l i m t → 0 cos 2 t ) k .
Now we can find each limit:
l i m t → 0 ( e − 3 t ) = e − 3 ⋅ 0 = e 0 = 1 lim_{ t \to 0} (e^{-3t})=e^{-3\cdot 0}=e^0=1 l i m t → 0 ( e − 3 t ) = e − 3 ⋅ 0 = e 0 = 1 .
To find the second limit we can use L'Hopital's rule twice:
l i m t → 0 ( t 2 s i n 2 t ) = [ 0 0 ] = l i m t → 0 ( ( t 2 ) ′ ( s i n 2 t ) ′ ) = l i m t → 0 ( 2 t 2 s i n t c o s t ) = l i m t → 0 ( 2 t s i n 2 t ) = [ 0 0 ] = 1 lim_{ t \to 0}(\frac{t^2}{sin^2 t})=[\frac{0}{0}]=lim_{ t \to 0}(\frac{(t^2)\prime}{(sin^2 t)\prime})=lim_{ t \to 0}(\frac{2t}{2sint cos t})=lim_{ t \to 0}(\frac{2t}{sin2t})=[\frac{0}{0}]=1 l i m t → 0 ( s i n 2 t t 2 ) = [ 0 0 ] = l i m t → 0 ( ( s i n 2 t ) ′ ( t 2 ) ′ ) = l i m t → 0 ( 2 s in t cos t 2 t ) = l i m t → 0 ( s in 2 t 2 t ) = [ 0 0 ] = 1 .
l i m t → 0 ( c o s 2 t ) = c o s ( 2 ⋅ 0 ) = c o s 0 = 1. lim_{ t \to 0} (cos 2t)=cos(2\cdot 0)=cos0=1. l i m t → 0 ( cos 2 t ) = cos ( 2 ⋅ 0 ) = cos 0 = 1.
Finally:
l i m t → 0 ( e − 3 t i + t 2 s i n 2 t j + c o s 2 t k ) = 1 i + 1 j + 1 k = i + j + k . lim_{ t \to 0} (e^{-3t}i+\frac{t^2}{sin^2 t}j+ cos 2tk)=1i+1j+1k=i+j+k. l i m t → 0 ( e − 3 t i + s i n 2 t t 2 j + cos 2 t k ) = 1 i + 1 j + 1 k = i + j + k .
b) l i m t → 1 ( t 2 − t t − 1 i + t + 8 j + s i n π t l n t k ) = ( l i m t → 1 t 2 − t t − 1 ) i + ( l i m t → 1 t + 8 ) j + ( l i m t → 1 s i n π t l n t ) k . lim_{t \to 1}(\frac{t^2-t}{t-1}i+\sqrt{t+ 8}j+\frac{sin \pi t}{ln t} k)=(lim_{t \to 1}\frac{t^2-t}{t-1})i+(lim_{t \to 1}\sqrt{t+ 8})j+(lim_{t \to 1}\frac{sin \pi t}{ln t}) k. l i m t → 1 ( t − 1 t 2 − t i + t + 8 j + l n t s inπ t k ) = ( l i m t → 1 t − 1 t 2 − t ) i + ( l i m t → 1 t + 8 ) j + ( l i m t → 1 l n t s inπ t ) k .
Now we can find each limit:
l i m t → 1 ( t 2 − t t − 1 ) = [ 0 0 ] = l i m t → 1 ( t ( t − 1 ) t − 1 ) = l i m t → 1 t = 1. lim_{t \to 1}(\frac{t^2-t}{t-1})=[\frac{0}{0}]=lim_{t \to 1}(\frac{t(t-1)}{t-1})=lim_{t \to 1}t=1. l i m t → 1 ( t − 1 t 2 − t ) = [ 0 0 ] = l i m t → 1 ( t − 1 t ( t − 1 ) ) = l i m t → 1 t = 1.
l i m t → 1 t + 8 = 1 + 8 = 9 = 3. lim_{t \to 1}\sqrt{t+ 8}=\sqrt{1+ 8}=\sqrt{9}=3. l i m t → 1 t + 8 = 1 + 8 = 9 = 3.
l i m t → 1 s i n π t l n t = [ 0 0 ] = l i m t → 1 ( s i n π t ) ′ ( l n t ) ′ = l i m t → 1 π c o s π t 1 t = l i m t → 1 ( π t c o s π t ) = lim_{t \to 1}\frac{sin \pi t}{ln t}=[\frac{0}{0}]=lim_{t \to 1}\frac{(sin \pi t)\prime}{(ln t)\prime}=lim_{t \to 1}\frac{\pi cos \pi t}{\frac{1}{t}}=lim_{t \to 1}(\pi t cos \pi t)= l i m t → 1 l n t s inπ t = [ 0 0 ] = l i m t → 1 ( l n t ) ′ ( s inπ t ) ′ = l i m t → 1 t 1 π cos π t = l i m t → 1 ( π t cos π t ) =
= π ⋅ 1 ⋅ c o s ( π ⋅ 1 ) = − π . =\pi \cdot 1 \cdot cos(\pi \cdot 1)=- \pi. = π ⋅ 1 ⋅ cos ( π ⋅ 1 ) = − π .
Finally:
l i m t → 1 ( t 2 − t t − 1 i + t + 8 j + s i n π t l n t k ) = 1 i + 3 j + π k = i + 3 j − π k . lim_{t \to 1}(\frac{t^2-t}{t-1}i+\sqrt{t+ 8}j+\frac{sin \pi t}{ln t} k)=1i+3j+\pi k=i+3j-\pi k. l i m t → 1 ( t − 1 t 2 − t i + t + 8 j + l n t s inπ t k ) = 1 i + 3 j + πk = i + 3 j − πk .
2)
The vector equation of the line segment is given by r ( t ) = ( 1 − t ) r 0 + t r 1 , r(t)=(1-t)r_0+tr_1, r ( t ) = ( 1 − t ) r 0 + t r 1 , where 0 ≤ t ≤ 1 0\leq t\leq 1 0 ≤ t ≤ 1 and r 0 r_0 r 0 and r 1 r_1 r 1 are the vector equivalents of the endpoints:
P ( − 1 , 2 , 2 ) P(-1,2,2) P ( − 1 , 2 , 2 ) becomes r 0 = ⟨ − 1 , 2 , 2 ⟩ , r_0=⟨-1,2,2⟩, r 0 = ⟨ − 1 , 2 , 2 ⟩ ,
Q ( − 3 , 5 , 1 ) Q(-3,5,1) Q ( − 3 , 5 , 1 ) becomes r 1 = ⟨ − 3 , 5 , 1 ⟩ . r_1=⟨-3,5,1⟩. r 1 = ⟨ − 3 , 5 , 1 ⟩ .
Plug r 0 r_0 r 0 and r 2 r_2 r 2 into the vector formula:
r ( t ) = ( 1 − t ) ⟨ − 1 , 2 , 2 ⟩ + t ⟨ − 3 , 5 , 1 ⟩ = ⟨ − 1 + t − 3 t , 2 − 2 t + 5 t , 2 − 2 t + t ⟩ = r(t)=(1-t)⟨-1,2,2⟩+t⟨-3,5,1⟩=⟨-1+t-3t,2-2t+5t,2-2t+t⟩= r ( t ) = ( 1 − t ) ⟨ − 1 , 2 , 2 ⟩ + t ⟨ − 3 , 5 , 1 ⟩ = ⟨ − 1 + t − 3 t , 2 − 2 t + 5 t , 2 − 2 t + t ⟩ =
= ⟨ − 1 − 2 t , 2 + 3 t , 2 − t ⟩ =⟨-1-2t,2+3t,2-t⟩ = ⟨ − 1 − 2 t , 2 + 3 t , 2 − t ⟩ .
We have the vector equation: r ( t ) = ⟨ − 1 − 2 t , 2 + 3 t , 2 − t ⟩ , 0 ≤ t ≤ 1 , r(t)=⟨-1-2t,2+3t,2-t⟩, 0 \leq t \leq 1, r ( t ) = ⟨ − 1 − 2 t , 2 + 3 t , 2 − t ⟩ , 0 ≤ t ≤ 1 , or r ( t ) = ( − 1 − 2 t ) i + ( 2 + 3 t ) j + ( 2 − t ) k , 0 ≤ t ≤ 1. r(t)=(-1-2t)i+(2+3t)j+(2-t)k, 0 \leq t \leq 1. r ( t ) = ( − 1 − 2 t ) i + ( 2 + 3 t ) j + ( 2 − t ) k , 0 ≤ t ≤ 1.
To get the parametric equations of the line segment, we have to take the coefficients by i , j , k i, j, k i , j , k :
{ x = − 1 − 2 t , y = 2 + 3 t , z = 2 − t , \begin{cases} x=-1-2t, \\ y=2+3t, \\ z=2-t, \end{cases} ⎩ ⎨ ⎧ x = − 1 − 2 t , y = 2 + 3 t , z = 2 − t , 0 ≤ t ≤ 1. 0 \leq t \leq 1. 0 ≤ t ≤ 1.
Comments