(a)
Let's use the [ ] instead of the < > such that e-t
"\ud835\udc2b (t)=\\begin{bmatrix}\n e^{-t} \\\\\nt-t^3\\\\\nln(t)\n\n \n\\end{bmatrix}" so that the derivative of r (t) will be;
"\ud835\udc2b'(t)=\\frac{d\ud835\udc2b}{dt} (t) = \\begin{bmatrix}\n \\frac{d}{dt} e^{-t} \\\\\n\\frac{d}{dt} t-t^3 \\\\\n\\frac{d}{dt}ln (t)\n\n\n \n\\end{bmatrix}"
"=\\begin{bmatrix}\n -e^{-t} \\\\\n1- 3t^3 \\\\\n\\frac{1}{t}\n\n \n\\end{bmatrix}"
(b)
"\ud835\udc2b(t)=\\frac{1}{1+t}i + \\frac{t}{1+t}j + \\frac{t^2}{1+t}k" here, we apply the formula;
"\ud835\udc2b'(t)= \\lim\\limits_{\u0394t\u21920} \\frac{\ud835\udc2b(t + \u0394t) - \ud835\udc2b(t)}{\u0394t}"
"=\\lim\\limits_{\u0394t\u21920} \\frac{\\frac{1}{1+t + \u0394t}i + \\frac{t + \u0394t}{1+t + \u0394t}j + \\frac{(t + \u0394t)^2}{1+t + \u0394t}k- (\\frac{1}{1+t}i + \\frac{t}{1+t}j + \\frac{t^2}{1+t}k)} {\u0394t}"
"=\\lim\\limits_{\u0394t\u21920} \\frac{\\frac{1}{1+t + \u0394t}i + \\frac{t + \u0394t}{1+t + \u0394t}j + \\frac{(t^2 + 2t\u0394t +(\u0394t)^2}{1+t + \u0394t}k- (\\frac{1}{1+t}i + \\frac{t}{1+t}j + \\frac{t^2}{1+t}k)} {\u0394t}"
"=\\lim\\limits_{\u0394t\u21920}\\frac{[\\frac{1}{1+t + \u0394t}- \\frac{1}{1+t}] i + [\\frac{t + \u0394t}{1+t + \u0394t}-\\frac{t}{1+t}]j + [\\frac{(t^2 + 2t\u0394t +(\u0394t)^2}{1+t + \u0394t}-\\frac{t^2}{1+t}] k} {\u0394t}"
"=\\lim\\limits_{\u0394t\u21920}\\frac{[\\frac{1+t-1-t-\u0394t} {(1+t) (1+t+ \u0394t)}] i + [\\frac{(1+t)-t(1+t+\u0394t)}{(1+t)(1+t + \u0394t)} ]j + [\\frac{(t+1)(t^2+2t\u0394t+(\u0394t)^2) -t^2(1+t+\u0394t)} {(1+t)(1+t + \u0394t)}] k} {\u0394t}"
"=\\lim\\limits_{\u0394t\u21920}\\frac{[\\frac{-\u0394t} {(1+t) (1+t+ \u0394t)}] i + [\\frac{\u0394t} {(1+t)(1+t + \u0394t)} ]j + [\\frac{ \u0394t (2t\u0394t+t^2+2t)} {(1+t)(1+t + \u0394t)}] k} {\u0394t}"
"=\\lim\\limits_{\u0394t\u21920}\\frac{[\u0394t (\\frac{-1} {(1+t) (1+t+ \u0394t)}) ] i + [ \u0394t(\\frac{1} {(1+t)(1+t + \u0394t)}) ]j + [ \u0394t(\\frac{ 2t\u0394t+t^2+2t} {(1+t)(1+t + \u0394t)}) ] k} {\u0394t}" Factorize Δt outside so that we have;
"= \\lim\\limits_{\u0394t\u21920}\u0394t\\frac{ [ \\frac{-1} {(1+t) (1+t+ \u0394t)} i + \\frac{1} {(1+t)(1+t + \u0394t)} j + \\frac{ 2t\u0394t+t^2+2t} {(1+t)(1+t + \u0394t)} k]} {\u0394t}" and it cancels out, remaining with;
"= \\lim\\limits_{\u0394t\u21920}{ \\frac{-1} {(1+t) (1+t+ \u0394t)} i + \\frac{1} {(1+t)(1+t + \u0394t)} j + \\frac{ 2t\u0394t+t^2+2t} {(1+t)(1+t + \u0394t)} k}" Now substitute the value of Δt
"So, therefore, \ud835\udc2b'(t)= {\\frac{-1} {(1+2t+t^2)} i + \\frac{1} {(1+2t+t^2)} j + \\frac{ t^2+2t} {(1+2t+t^2)} k}"
Comments
Leave a comment