Question #133029
Find the derivative of the vector function.
a)r(t) =<e^(-t),t-t^3,ln t>
b)r(t) =(1/(1 +t)i+(t/(1 +t))j+((t^2)/(1 +t))k
1
Expert's answer
2020-09-16T19:58:04-0400

a)

r(t)=et,13t2,1tr'(t)=\langle -e^{-t}, 1-3t^2, {1 \over t} \rangle

b)

(t1+t)=1+tt(1+t)2=1(1+t)2({t \over 1+t})'={1+t-t \over (1+t)^2}={1 \over (1+t)^2}

(t21+t)=2t+2t2t2(1+t)2=t2+2t(1+t)2({t^2 \over 1+t})'={2t+2t^2-t^2 \over (1+t)^2}={t^2+2t \over (1+t)^2}

r(t)=1(1+t)2i+1(1+t)2j+t2+2t(1+t)2kr'(t)=-{1 \over (1+t)^2}i+{1 \over (1+t)^2}j+{t^2+2t \over (1+t)^2}k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS