2020-09-14T00:38:56-04:00
Evaluate the integral:
∫(t to 0) (3si+(3s^2)j+17k)ds
1
2020-09-21T14:52:26-0400
∫ 0 t ( 3 s i ⃗ + 3 s 2 j ⃗ + 17 k ⃗ ) d s = \displaystyle\int_{0}^t(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds= ∫ 0 t ( 3 s i + 3 s 2 j + 17 k ) d s =
= ∫ 0 t 3 s d s i ⃗ + ∫ 0 t 3 s 2 d s j ⃗ + ∫ 0 t 17 d s k ⃗ = =\displaystyle\int_{0}^t3sds\ \vec{i}+\displaystyle\int_{0}^t3s^2ds\ \vec{j}+\displaystyle\int_{0}^t17ds\ \vec{k}= = ∫ 0 t 3 s d s i + ∫ 0 t 3 s 2 d s j + ∫ 0 t 17 d s k =
= [ 3 s 2 2 ] t 0 i ⃗ + [ 3 s 3 3 ] t 0 j ⃗ + [ 17 s ] t 0 k ⃗ = =[\dfrac{3s^2}{2}]\begin{matrix}
t\\
0
\end{matrix}\ \vec{i}+[\dfrac{3s^3}{3}]\begin{matrix}
t\\
0
\end{matrix}\ \vec{j}+[17s]\begin{matrix}
t\\
0
\end{matrix}\ \vec{k}= = [ 2 3 s 2 ] t 0 i + [ 3 3 s 3 ] t 0 j + [ 17 s ] t 0 k =
= 3 t 2 2 i ⃗ + t 3 j ⃗ + 17 t k ⃗ =\dfrac{3t^2}{2}\ \vec{i}+t^3\ \vec{j}+17t\ \vec{k} = 2 3 t 2 i + t 3 j + 17 t k
∫ 0 t ( 3 s i ⃗ + 3 s 2 j ⃗ + 17 k ⃗ ) d s = 3 t 2 2 i ⃗ + t 3 j ⃗ + 17 t k ⃗ \displaystyle\int_{0}^t(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds=\dfrac{3t^2}{2}\ \vec{i}+t^3\ \vec{j}+17t\ \vec{k} ∫ 0 t ( 3 s i + 3 s 2 j + 17 k ) d s = 2 3 t 2 i + t 3 j + 17 t k
∫ t 0 ( 3 s i ⃗ + 3 s 2 j ⃗ + 17 k ⃗ ) d s = − 3 t 2 2 i ⃗ − t 3 j ⃗ − 17 t k ⃗ \displaystyle\int_{t}^0(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds=-\dfrac{3t^2}{2}\ \vec{i}-t^3\ \vec{j}-17t\ \vec{k} ∫ t 0 ( 3 s i + 3 s 2 j + 17 k ) d s = − 2 3 t 2 i − t 3 j − 17 t k
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments