Question #133047
Evaluate the integral:

∫(t to 0) (3si+(3s^2)j+17k)ds
1
Expert's answer
2020-09-21T14:52:26-0400
0t(3si+3s2j+17k)ds=\displaystyle\int_{0}^t(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds=

=0t3sds i+0t3s2ds j+0t17ds k==\displaystyle\int_{0}^t3sds\ \vec{i}+\displaystyle\int_{0}^t3s^2ds\ \vec{j}+\displaystyle\int_{0}^t17ds\ \vec{k}=

=[3s22]t0 i+[3s33]t0 j+[17s]t0 k==[\dfrac{3s^2}{2}]\begin{matrix} t\\ 0 \end{matrix}\ \vec{i}+[\dfrac{3s^3}{3}]\begin{matrix} t\\ 0 \end{matrix}\ \vec{j}+[17s]\begin{matrix} t\\ 0 \end{matrix}\ \vec{k}=

=3t22 i+t3 j+17t k=\dfrac{3t^2}{2}\ \vec{i}+t^3\ \vec{j}+17t\ \vec{k}

0t(3si+3s2j+17k)ds=3t22 i+t3 j+17t k\displaystyle\int_{0}^t(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds=\dfrac{3t^2}{2}\ \vec{i}+t^3\ \vec{j}+17t\ \vec{k}


t0(3si+3s2j+17k)ds=3t22 it3 j17t k\displaystyle\int_{t}^0(3s\vec{i}+3s^2\vec{j}+17\vec{k})ds=-\dfrac{3t^2}{2}\ \vec{i}-t^3\ \vec{j}-17t\ \vec{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS