"\\textsf{Use the following parametrization}\\\\ \\textsf{for the curve r generated}\\\\ \\textsf{by the intersection}:\\\\\n\nr(t)=(x(t), y(t), z(t)), \\\\t \\in [0,2\u03c0)\\hspace{0.1cm}\n\\textsf{Also, note that}\\hspace{0.1cm} r(t): \\mathbb{R} \\rightarrow \\mathbb{R}^3 \\hspace{0.1cm} \\textsf{is a vector} \\\\ \\textsf{valued function of a real variable.}\\\\\n\n\\textsf{To reach this result,}\\\\\\textsf{we must consider the curves}\\\\\\textsf{that these equations}\\\\\\textsf{define on certain planes.}\\\\\n\n\\textsf{The equation}\\hspace{0.1cm} x^2 +y^2 = 64 \\\\\\textsf{defines a circle of radius}\\\\\n8 \\hspace{0.1cm} \\textsf{centered on the \\textit{z-axis}}\\\\ \\textsf{on the plane} \\hspace{0.1cm} z = p_1, where \\\\p_1 \\in \\mathbb{R} \\hspace{0.1cm}\\textsf{is any constant.}\\\\\n\n\\textsf{The equation} \\hspace{0.1cm} z = 3x^4 \\hspace{0.1cm} \\textsf{defines}\\\\ \\textsf{a quartic curve on}\\\\\\textsf{any plane} \\hspace{0.1cm} y = p_2, \\hspace{0.1cm}\\textsf{where}\\\\ p_2 \\in \\mathbb{R} \\hspace{0.1cm}\\textsf{is another constant.}\\\\\n\n\n\\textsf{The surfaces are, therefore}, \\\\\\textsf{those obtained by translating}\\\\\\textsf{ the circle along the}\\hspace{0.1cm} z-axis \\\\\\textsf{and the quartic curve along}\\\\ \\textsf{the}\\hspace{0.1cm} y-axis.\\\\\n\n\\textsf{To obtain a parametrization}\\\\ \\textsf{for the intersection curve}\\hspace{0.1cm}\nr(t),\\\\ \\textsf{we must find equations}\\\\ \\textsf{for} \\hspace{0.1cm} x, y\\hspace{0.1cm} \\textsf{and}\\hspace{0.1cm} z\\hspace{0.1cm}\\textsf{as functions of} \\hspace{0.1cm} t\\\\ \\textsf{that both obeys equations}\\\\\\textsf{given in the problem.}\\\\\\textsf{Consider the standard}\\\\ \\textsf{parametrization for a circle}\\\\ X\\hspace{0.1cm}\\textsf{of radius}\\hspace{0.1cm} r.\\\\ x^2 + y^2= r^2\\\\\\Rightarrow X(t) =\n(rcos(t),rsin(t)), t \\in [0,2\u03c0)\\\\\n\\textsf{Comparing this with the first}\\\\\\textsf{given equation, we get}\\\\ r = 8, x = 8\\cos{t} \\hspace{0.1cm}\\&\\hspace{0.1cm} y = 8\\sin{t}\\\\\\textsf{Now, we already have}\\\\\\textsf{an expression for}\\hspace{0.1cm} x(t).\\\\\\textsf{For the second condition},\\\\ \\textsf{we make:}\\hspace{0.1cm} z =3x^4 = 3(8\\cos{t})^4 = 12288\\cos^4{t}\\\\\\therefore (y(t), z(t)) = (8\\sin{t}, 12288\\cos^4{t}) \\\\\\textsf{And thus, we have}\\\\ \\textsf{the parametrization given as} \\\\\nr(t) = (8\\cos{t}, 8\\sin{t}, 12288\\cos^4{t})"
Comments
Leave a comment