"\\displaystyle r(t) = (\\cos{t}, \\sin{t}, t)\\\\ \n\n\\textsf{at}\\hspace{0.1cm} t = 0, r(0) = (\\cos{0}, \\sin{0}, 0) = (1, 0, 0)\\\\\n\nr'(t) = (-\\sin{t}, \\cos{t}, 1)\\\\\n\n\n\\textsf{At the point} \\hspace{0.1cm}(x(t), y(t), z(t)) = \\left(\\cos\\left(\\frac{2\\pi}{6}\\right), \\sin\\left(\\frac{2\\pi}{6}\\right), \\frac{2\\pi}{6}\\right),\\\\\n\n\\textsf{ it corresponds to}\\hspace{0.1cm} t = \\frac{2\\pi}{6}.\\\\\n\n\\textsf{Thus, we are looking for the}\\\\\\textsf{tangent vector at}\\hspace{0.1cm} t = \\frac{2\\pi}{6}\\\\\n\n \nr'\\left(\\frac{2\\pi}{6}\\right)= \\left(-\\sin\\left(\\frac{2\\pi}{6}\\right), \\cos\\left(\\frac{2\\pi}{6}\\right), 1\\right)\\\\ = \\left(-\\frac{\\sqrt{3}}{2},\\frac{1}{2}, 1\\right)\\\\\n\n\\therefore \\textsf{The parametric equations for the line}\\\\\\textsf{ that is tangent to the curve} \\hspace{0.1cm} r(t) \\hspace{0.1cm}\\textsf{are}\\\\\n\nx - 1 = -\\frac{\\sqrt{3}}{2}t, y - 0 = \\frac{1}{2}t, z - 0 = t\\\\\n\nx = -\\frac{\\sqrt{3}}{2}t + 1, y = \\frac{1}{2}t, z = t"
Comments
Leave a comment