Question #133055
Find parametric equations for line that is tangent to the curve x=cost, y=sint, z=t at the point
(cos(2π/6),sin(2π/6),2π/6) .

Parametrize the line so that it passes through the given point at t=0. All three answers are required for credit.
1
Expert's answer
2020-09-22T16:31:25-0400

r(t)=(cost,sint,t)att=0,r(0)=(cos0,sin0,0)=(1,0,0)r(t)=(sint,cost,1)At the point(x(t),y(t),z(t))=(cos(2π6),sin(2π6),2π6), it corresponds tot=2π6.Thus, we are looking for thetangent vector att=2π6r(2π6)=(sin(2π6),cos(2π6),1)=(32,12,1)The parametric equations for the line that is tangent to the curver(t)arex1=32t,y0=12t,z0=tx=32t+1,y=12t,z=t\displaystyle r(t) = (\cos{t}, \sin{t}, t)\\ \textsf{at}\hspace{0.1cm} t = 0, r(0) = (\cos{0}, \sin{0}, 0) = (1, 0, 0)\\ r'(t) = (-\sin{t}, \cos{t}, 1)\\ \textsf{At the point} \hspace{0.1cm}(x(t), y(t), z(t)) = \left(\cos\left(\frac{2\pi}{6}\right), \sin\left(\frac{2\pi}{6}\right), \frac{2\pi}{6}\right),\\ \textsf{ it corresponds to}\hspace{0.1cm} t = \frac{2\pi}{6}.\\ \textsf{Thus, we are looking for the}\\\textsf{tangent vector at}\hspace{0.1cm} t = \frac{2\pi}{6}\\ r'\left(\frac{2\pi}{6}\right)= \left(-\sin\left(\frac{2\pi}{6}\right), \cos\left(\frac{2\pi}{6}\right), 1\right)\\ = \left(-\frac{\sqrt{3}}{2},\frac{1}{2}, 1\right)\\ \therefore \textsf{The parametric equations for the line}\\\textsf{ that is tangent to the curve} \hspace{0.1cm} r(t) \hspace{0.1cm}\textsf{are}\\ x - 1 = -\frac{\sqrt{3}}{2}t, y - 0 = \frac{1}{2}t, z - 0 = t\\ x = -\frac{\sqrt{3}}{2}t + 1, y = \frac{1}{2}t, z = t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS