Question #133049
Calculate the velocity and acceleration vectors, and speed for
r(t)=⟨cos(4t),cos(t),sin(t)⟩
when t=7π/4.
1
Expert's answer
2020-09-21T16:18:40-0400

v(t)=r(t)=<4sin4t,sint,cost>v(t)=r'(t)=<-4\sin4t,-\sin t, \cos t >

a(t)=v(t)=r(t)=<16cos4t,cost,sint>a(t)=v'(t)=r''(t)=<-16\cos 4t,-\cos t,-\sin t>

Substituting the values we get

v(t)=<4.sin7π,sin7π/4,cos7π/4>=<0,12,12>v(t)=<-4.\sin7\pi,-\sin7\pi/4,\cos7\pi/4>=<0,\frac{1}{\sqrt2},\frac{1}{\sqrt2}>

a(t)=<16.cos7π,cos7π/4,sin7π/4>=<16,12,12>a(t)=<-16.\cos7\pi,-\cos7\pi/4,-\sin7\pi/4>=<16,-\frac1{\sqrt2},\frac1{\sqrt2}>


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS