v(t)=r′(t)=<−4sin4t,−sint,cost>v(t)=r'(t)=<-4\sin4t,-\sin t, \cos t >v(t)=r′(t)=<−4sin4t,−sint,cost>
a(t)=v′(t)=r′′(t)=<−16cos4t,−cost,−sint>a(t)=v'(t)=r''(t)=<-16\cos 4t,-\cos t,-\sin t>a(t)=v′(t)=r′′(t)=<−16cos4t,−cost,−sint>
Substituting the values we get
v(t)=<−4.sin7π,−sin7π/4,cos7π/4>=<0,12,12>v(t)=<-4.\sin7\pi,-\sin7\pi/4,\cos7\pi/4>=<0,\frac{1}{\sqrt2},\frac{1}{\sqrt2}>v(t)=<−4.sin7π,−sin7π/4,cos7π/4>=<0,21,21>
a(t)=<−16.cos7π,−cos7π/4,−sin7π/4>=<16,−12,12>a(t)=<-16.\cos7\pi,-\cos7\pi/4,-\sin7\pi/4>=<16,-\frac1{\sqrt2},\frac1{\sqrt2}>a(t)=<−16.cos7π,−cos7π/4,−sin7π/4>=<16,−21,21>
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments