The domain of the vector function is the intersection of the domains of its component functions.
a) r(t)=⟨ln(2t),t+7,14−t1⟩.
ln(2t) exists for 2t>0, hence t>0 or t∈(0,∞);
t+7 exists for t+7≥0, t≥−7 or t∈[−7,∞);
14−t1 exists when 14−t>0, or t<14, t∈(−∞,14).
(0,∞)⋂[−7,∞)⋂(−∞,14)=(0,14).
Answer. (0,14).
b) r(t)=⟨t−1,sin(1t),t2⟩.
t−1 exists when t−1≥0, t≥1 or t∈[1,∞);
sin(1t) exists for t∈R;
t2 exists for t∈R.
[1,∞)∩R∩R=[1,∞).
Answer. [1,∞).
c) r(t)=⟨e−1t,t2−1t,t1/3⟩.
e−1t exists for t∈R;
t2−1t exists when t2−1>0, t2>1, t∈(−∞,−1)∪(1,∞).
t1/3 exists for t∈R.
((−∞,−1)∪(1,∞))∩R∩R=(−∞,−1)∪(1,∞).
Answer. (−∞,−1)∪(1,∞).
Comments