The domain of the vector function is the intersection of the domains of its component functions.
a) "r(t)=\u27e8ln(2t),\\sqrt{t+7},\\frac{1}{\\sqrt{14\u2212t}}\u27e9."
"ln(2t)" exists for "2t>0", hence "t>0" or "t \\in (0, \\infty);"
"\\sqrt{t+7}" exists for "t+7 \\geq 0", "t \\geq -7" or "t \\in [-7, \\infty);"
"\\frac{1}{\\sqrt{14\u2212t}}" exists when "14-t>0", or "t<14," "t \\in (-\\infty, 14)."
"(0, \\infty)\\bigcap [-7, \\infty) \\bigcap (-\\infty, 14)=(0,14)."
Answer. "(0,14)."
b) "r(t)=\u27e8\\sqrt{t\u22121},sin(1t),t^2\u27e9."
"\\sqrt{t\u22121}" exists when "t-1 \\geq0," "t \\geq 1" or "t \\in [1, \\infty);"
"sin(1t)" exists for "t \\in \\R;"
"t^2" exists for "t \\in \\R."
"[1, \\infty) \\cap \\R \\cap \\R=[1, \\infty)."
Answer. "[1, \\infty)."
c) "r(t)=\u27e8 e^{\u22121t},\\frac{t}{\\sqrt{t^2\u22121}},t^{1\/3}\u27e9."
"e^{\u22121t}" exists for "t \\in \\R;"
"\\frac{t}{\\sqrt{t^2\u22121}}" exists when "t^2-1>0," "t^2>1," "t \\in (-\\infty,-1) \\cup (1, \\infty)."
"t^{1\/3}" exists for "t \\in \\R."
"((-\\infty,-1) \\cup (1, \\infty)) \\cap \\R \\cap \\R=(-\\infty,-1) \\cup (1, \\infty)."
Answer. "(-\\infty,-1) \\cup (1, \\infty)."
Comments
Leave a comment