Question #133052
Find the domain of the vector functions, r(t), listed below.
using interval notation.

a) r(t)=⟨ln(2t),√(t+7),1/(√(14−t))⟩
b) r(t)=⟨√(t−1),sin(1t),t^2⟩
c) r(t)=⟨ e^(−1t),t/(√(t^2−1),t^(1/3)⟩
1
Expert's answer
2020-09-22T13:53:23-0400

The domain of the vector function is the intersection of the domains of its component functions.


a) r(t)=ln(2t),t+7,114t.r(t)=⟨ln(2t),\sqrt{t+7},\frac{1}{\sqrt{14−t}}⟩.

ln(2t)ln(2t) exists for 2t>02t>0, hence t>0t>0 or t(0,);t \in (0, \infty);

t+7\sqrt{t+7} exists for t+70t+7 \geq 0, t7t \geq -7 or t[7,);t \in [-7, \infty);

114t\frac{1}{\sqrt{14−t}} exists when 14t>014-t>0, or t<14,t<14, t(,14).t \in (-\infty, 14).

(0,)[7,)(,14)=(0,14).(0, \infty)\bigcap [-7, \infty) \bigcap (-\infty, 14)=(0,14).

Answer. (0,14).(0,14).


b) r(t)=t1,sin(1t),t2.r(t)=⟨\sqrt{t−1},sin(1t),t^2⟩.

t1\sqrt{t−1} exists when t10,t-1 \geq0, t1t \geq 1 or t[1,);t \in [1, \infty);

sin(1t)sin(1t) exists for tR;t \in \R;

t2t^2 exists for tR.t \in \R.

[1,)RR=[1,).[1, \infty) \cap \R \cap \R=[1, \infty).

Answer. [1,).[1, \infty).


c) r(t)=e1t,tt21,t1/3.r(t)=⟨ e^{−1t},\frac{t}{\sqrt{t^2−1}},t^{1/3}⟩.

e1te^{−1t} exists for tR;t \in \R;

tt21\frac{t}{\sqrt{t^2−1}} exists when t21>0,t^2-1>0, t2>1,t^2>1, t(,1)(1,).t \in (-\infty,-1) \cup (1, \infty).

t1/3t^{1/3} exists for tR.t \in \R.

((,1)(1,))RR=(,1)(1,).((-\infty,-1) \cup (1, \infty)) \cap \R \cap \R=(-\infty,-1) \cup (1, \infty).

Answer. (,1)(1,).(-\infty,-1) \cup (1, \infty).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS