Find the length of the curve r(t) =<cost, sint, ln(cost)> for 0≤t≤pi/4.
1
Expert's answer
2020-09-21T11:49:09-0400
r(t)=(cost,sint,ln(cost)),for0≤t≤4πr(t)is a parametric equation ofx,yandz.Also note thatr(t):R→R3is a vector valued function of a real variablewith independent scalar output variablesx,y&zr(t)=(x(t),y(t),z(t))⇒x(t)=cost,y(t)=sint,z(t)=lncostLength of the curve(s)=∫s1s2(dtdx)2+(dtdy)2+(dtdz)2dtx(t)=cost,y(t)=sint,z(t)=ln(cost)dtdx=−sint,dtdy=cost,dtdz=−tants=∫04πsin2t+cos2t+tan2tdts=∫04π1+tan2tdts=∫04πsec2tdts=∫04πsectdts=∫04πsect(sect+tantsect+tant)dts=∫04πsect+tantsec2t+tantsectdts=∫04πsect+tantd(sect+tant)s=ln(sect+tant)∣04πs=ln(sec(4π)+tan(4π))−ln(sec0+tan0)s=ln(2+1)−ln(1+0)=ln(2+1)−ln(1)=ln(2+1)−0=ln(2+1)∴The length of the curver(t)=(cost,sint,lncost)),for0≤t≤4πisln(2+1)unit≈0.8814unit
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments