Answer to Question #134076 in Calculus for Higgins

Question #134076
Determine the average rate of change of the surface area when the surface area decreases from 2827.43 cm^2 to 1256.64 cm^2.
1
Expert's answer
2020-09-21T12:01:39-0400

Rate of change of the surface area=dAAdA=1256.642827.43dAA=1256.642827.432827.430.5556=55.56%The average rate of changeof the surface area when thesurface area decreases from2827.43cm2to1256.64cm2is55.56%\textsf{Rate of change of the surface area} \hspace{0.1cm} = \frac{\mathrm{d}A}{A}\\ \mathrm{d}A = 1256.64 - 2827.43 \\ \frac{\mathrm{d}A}{A} = \frac{1256.64 - 2827.43}{2827.43} \approx -0.5556 = -55.56\%\\ \therefore \hspace{0.1cm} \textsf{The average rate of change}\\\textsf{of the surface area when the}\\\textsf{surface area decreases from}\\\hspace{0.1cm} 2827.43 \hspace{0.1cm}\textsf{cm}^2\hspace{0.1cm} \textsf{to} \hspace{0.1cm}1256.64 \hspace{0.1cm}\textsf{cm}^2 \hspace{0.1cm} \textsf{is} \\-55.56\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment