Radius of semicircle=x2=\frac{x}{2}=2x
Perimeter of window=x+2y+πx2=20=x+2y+\frac{πx}{2}=20=x+2y+2πx=20
y=10−x4(2+π)y=10-\frac{x}{4}(2+π)y=10−4x(2+π)
Area of window=xy+π2×x24=xy+\frac{π}{2}\times\frac{x^2}{4}=xy+2π×4x2
Substituting yyy in area, we get
Area of window=10x−x24(2+π2)=10x-\frac{x^2}{4}(2+\frac{π}{2})=10x−4x2(2+2π)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments