A wire of 20 inches is cut x inches from one end
First part forms square of perimeter x inches
The other part forms circle of circumference (20 - x) inches as shown in the figure below
For the Square
"P = 4L"
"x = 4L"
"L = \\frac{1}{4}x"
"Therefore, A = L ^2"
"A = (\\frac{1}{4}x)^2"
Area of square in terms of x "= \\frac{1}{16}x^2"
For the Circle
"Circumference, C = 2\\pi r"
"20 - x = 2\\pi r"
"r = \\frac{20 - x}{2\\pi}"
"Area, A = \\pi r^2"
"= \\frac{22}{7} \u00d7 (\\frac{20 - x}{2\\pi} ) ^2"
"= \\frac{22}{7} \u00d7 \\frac{(20 - x)^2\u00d7 49 }{4 \u00d7 484}"
"=\\frac{1078 (20 - x)^2 }{13552}"
"=\\frac{1078 (400 - 40x + x^2) }{13552}"
"=\\frac{7 (400 - 40x + x^2) }{88}"
"= \\frac{2800 - 280x + 7x^2}{88}"
Area of circle in terms of x "= \\frac{350}{11} - \\frac{35}{11} x + \\frac{7}{88}x^2"
Sum of area of the figures formed "=\\frac{1}{16}x^2 + \\frac{7}{88}x^2 - \\frac{35}{11} x +\\frac{350}{11}"
"= (\\frac{25}{176}x^2 - \\frac{35}{11} x +\\frac{350}{11} ) Sq. Inches"
Comments
Leave a comment