Let x be the distance from the center of the square to its side and the height of the triangular face is l. Therefore, "2x+2l= 5, \\;\\; l= 2.5-x."
The height of the pyramid is "\\sqrt{l^2-x^2}" . Therefore, the volume of the pyramid is "V = \\dfrac13\\cdot (2x)^2 \\cdot \\sqrt{l^2-x^2} = \\dfrac{4}{3} \\cdot x^2 \\cdot \\sqrt{l^2-x^2} = \\dfrac{4}{3} \\cdot x^2 \\cdot \\sqrt{(2.5-x)^2-x^2} = \\dfrac{4}{3} \\cdot x^2 \\cdot \\sqrt{2.5^2 - 5x}."
Comments
Leave a comment