Question #134543

1) Find the Taylor polynomial of order n for f(x) = ln 2x about x = 1?

2) Find the Taylor polynomial of order 3 for f(x) = 2√x about a = 4?

3)The area bounded by the curves x = 4y^2 , the line y = 1 and the y-axis in the first quadrant is rotated around the line x = 4: Determine the volume of resulting solid of revolution.


1
Expert's answer
2020-09-29T15:21:35-0400

1). We remind that the Taylor series expansion for the ln y around 1 (http://www.math.com/tables/expansion/log.htm):

ln(y)=n=1+(1)n1(y1)nln(y)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}(y-1)}{n}

After substitution y=2xy=2x we receive:

ln(2x)=n=1+(1)n1(2x1)nln(2x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}(2x-1)}{n}

2). We remind the Taylor formula:

f(x)=f(a)+f(a)(xa)+f(a)(xa)22!+...+f(k)(a)k!(xa)(k)+hk(x)(xa)(k),f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)(x-a)^2}{2!}+...+\frac{f^{(k)}(a)}{k!}(x-a)^{(k)}+h_k(x)(x-a)^{(k)},

where hk(x)0,xah_k(x)\rightarrow0,x\rightarrow a .

We compute the derivatives of f(x)=2xf(x)=2\sqrt{x} and get:

f(x)=1x,f(x)=121xx,f(x)=341x2xf'(x)=\frac{1}{\sqrt{x}},\qquad f''(x)=-\frac{1}{2}\frac{1}{x\sqrt{x}},\qquad f'''(x)=\frac{3}{4}\frac{1}{x^2\sqrt{x}}

Setting k=3k=3 and a=4a=4 we get:

2x=4+12(x4)132(x4)2+1256(x4)3+h3(x)(x4)32\sqrt{x}=4+\frac{1}{2}(x-4)-\frac{1}{32}(x-4)^2+\frac{1}{256}(x-4)^3+h_3(x)(x-4)^3 ,

h3(x)0,x4h_3(x)\rightarrow0, x\rightarrow4

3). The volume of the body, which is obtained after rotation of the graph is:

01π(44y2)2dy=0116π(12y2+y4)dy=16π(y23y3+y55)01=8π\int_{0}^1\pi (4-4y^2)^2dy=\int_{0}^116\pi (1-2y^2+y^4)dy=16\pi(y-\frac{2}{3}y^3+\frac{y^5}{5})|_0^1=8\pi

Answer: 1). ln(2x)=n=1+(1)n1(2x1)nln(2x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}(2x-1)}{n}

2). 2x=4+12(x4)132(x4)2+1256(x4)3+h3(x)(x4)32\sqrt{x}=4+\frac{1}{2}(x-4)-\frac{1}{32}(x-4)^2+\frac{1}{256}(x-4)^3+h_3(x)(x-4)^3 ,

h3(x)0,x4h_3(x)\rightarrow0, x\rightarrow4

3). 8π8\pi



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS