1) Find the Taylor polynomial of order n for f(x) = ln 2x about x = 1?
2) Find the Taylor polynomial of order 3 for f(x) = 2√x about a = 4?
3)The area bounded by the curves x = 4y^2 , the line y = 1 and the y-axis in the first quadrant is rotated around the line x = 4: Determine the volume of resulting solid of revolution.
1). We remind that the Taylor series expansion for the ln y around 1 (http://www.math.com/tables/expansion/log.htm):
"ln(y)=\\sum_{n=1}^{+\\infty}\\frac{(-1)^{n-1}(y-1)}{n}"
After substitution "y=2x" we receive:
"ln(2x)=\\sum_{n=1}^{+\\infty}\\frac{(-1)^{n-1}(2x-1)}{n}"
2). We remind the Taylor formula:
"f(x)=f(a)+f'(a)(x-a)+\\frac{f''(a)(x-a)^2}{2!}+...+\\frac{f^{(k)}(a)}{k!}(x-a)^{(k)}+h_k(x)(x-a)^{(k)},"
where "h_k(x)\\rightarrow0,x\\rightarrow a" .
We compute the derivatives of "f(x)=2\\sqrt{x}" and get:
"f'(x)=\\frac{1}{\\sqrt{x}},\\qquad f''(x)=-\\frac{1}{2}\\frac{1}{x\\sqrt{x}},\\qquad f'''(x)=\\frac{3}{4}\\frac{1}{x^2\\sqrt{x}}"
Setting "k=3" and "a=4" we get:
"2\\sqrt{x}=4+\\frac{1}{2}(x-4)-\\frac{1}{32}(x-4)^2+\\frac{1}{256}(x-4)^3+h_3(x)(x-4)^3" ,
"h_3(x)\\rightarrow0, x\\rightarrow4"
3). The volume of the body, which is obtained after rotation of the graph is:
"\\int_{0}^1\\pi (4-4y^2)^2dy=\\int_{0}^116\\pi (1-2y^2+y^4)dy=16\\pi(y-\\frac{2}{3}y^3+\\frac{y^5}{5})|_0^1=8\\pi"
Answer: 1). "ln(2x)=\\sum_{n=1}^{+\\infty}\\frac{(-1)^{n-1}(2x-1)}{n}"
2). "2\\sqrt{x}=4+\\frac{1}{2}(x-4)-\\frac{1}{32}(x-4)^2+\\frac{1}{256}(x-4)^3+h_3(x)(x-4)^3" ,
"h_3(x)\\rightarrow0, x\\rightarrow4"
3). "8\\pi"
Comments
Leave a comment