1) I=∫sec^2(πlnx)/3x dx, x>1
2) I=∫(tan(4ϴ)^-1/4 sec^2(4ϴ) dϴ
3) I=∫cos(2+ln√x)/x dx, x>1
4) ∫(1+√y)^1/4 /√y dy
1
2020-09-24T15:46:43-0400
1. I=∫3xsec2(πlnx)dx=∫3sec2(πlnx)d(lnx)==3π1∫cos2(πlnx)d(πlnx)=3πtan(πlnx)+C2. I=∫tan(4Θ)−1/4sec2(4Θ)dΘ==41⋅∫tan(4Θ)−1/4sec2(4Θ)d(4Θ)==41⋅∫tan(4Θ)−1/4d(tan(4Θ))==3tan(4Θ)3/4+C3. I=∫cos(2+lnx)xdx==2∫cos(2+lnx)d(lnx)==2sin(2+lnx)+C4. I=∫y(1+y)1/4dy=2∫(1+y)1/4d(y)==2∫(1+y)1/4d(1+y)==58⋅(1+y)5/4+C
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments