Question #134537
1) I=∫sec^2(πlnx)/3x dx, x>1
2) I=∫(tan(4ϴ)^-1/4 sec^2(4ϴ) dϴ
3) I=∫cos(2+ln√x)/x dx, x>1
4) ∫(1+√y)^1/4 /√y dy
1
Expert's answer
2020-09-24T15:46:43-0400
1. I=sec2(πlnx)3xdx=sec2(πlnx)3d(lnx)==13πd(πlnx)cos2(πlnx)=tan(πlnx)3π+C2. I=tan(4Θ)1/4sec2(4Θ)dΘ==14tan(4Θ)1/4sec2(4Θ)d(4Θ)==14tan(4Θ)1/4d(tan(4Θ))==tan(4Θ)3/43+C3. I=cos(2+lnx)dxx==2cos(2+lnx)d(lnx)==2sin(2+lnx)+C4. I=(1+y)1/4ydy=2(1+y)1/4d(y)==2(1+y)1/4d(1+y)==85(1+y)5/4+C1.\ I = \intop\frac{\sec^2(\pi lnx)}{3x}dx = \intop\frac{\sec^2(\pi lnx)}{3}d(lnx)=\\ = \frac{1}{3\pi}\intop\frac{d(\pi lnx)}{\cos^2(\pi lnx)}=\frac{\tan(\pi lnx)}{3\pi} + C \\ 2.\ I = \intop\tan(4\Theta)^{-1/4}\sec^2(4\Theta)d\Theta = \\ = \frac{1}{4}\cdot\intop\tan(4\Theta)^{-1/4}\sec^2(4\Theta)d(4\Theta) = \\ = \frac{1}{4}\cdot\intop\tan(4\Theta)^{-1/4}d(\tan(4\Theta)) = \\ =\frac{\tan(4\Theta)^{3/4}}{3}+C\\ 3.\ I = \intop\cos(2+ln\sqrt x) \frac{dx}{x}=\\ = 2\intop\cos(2+ln\sqrt x) d(ln\sqrt x)=\\ =2\sin(2+ln\sqrt x)+C \\ 4.\ I = \intop\frac{(1+\sqrt y)^{1/4}}{\sqrt y} dy = 2\intop(1+\sqrt y)^{1/4} d(\sqrt y) =\\ = 2\intop(1+\sqrt y)^{1/4} d(1+\sqrt y) =\\ = \frac{8}{5}\cdot(1+\sqrt y)^{5/4}+C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS