Question #131240
Evaluate the integral
∫▒√(〖1+x〗^(-2/3) ) dx
using the substitution u=1+x^(-2/3) dx
1
Expert's answer
2020-09-03T18:09:08-0400

(1+x)2/3dx=(1+x)1/3dxu=x+1    dudx=1     du=dx    dx1+x3=duu3=32u2/3+C=32(x+1)2/3+C\int\sqrt{(1+x)^{-2/3}}dx=\int({1+x})^{-1/3}dx \\ u=x+1 \implies \frac{du}{dx}=1\implies\ du=dx\implies\int\frac{dx}{\sqrt[3]{1+x}}= \int\frac{du}{\sqrt[3]{u}}=\frac{3}{2}u^{2/3}+C=\frac{3}{2}(x+1)^{2/3}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS