∫(1+x)−2/3dx=∫(1+x)−1/3dxu=x+1 ⟹ dudx=1 ⟹ du=dx ⟹ ∫dx1+x3=∫duu3=32u2/3+C=32(x+1)2/3+C\int\sqrt{(1+x)^{-2/3}}dx=\int({1+x})^{-1/3}dx \\ u=x+1 \implies \frac{du}{dx}=1\implies\ du=dx\implies\int\frac{dx}{\sqrt[3]{1+x}}= \int\frac{du}{\sqrt[3]{u}}=\frac{3}{2}u^{2/3}+C=\frac{3}{2}(x+1)^{2/3}+C∫(1+x)−2/3dx=∫(1+x)−1/3dxu=x+1⟹dxdu=1⟹ du=dx⟹∫31+xdx=∫3udu=23u2/3+C=23(x+1)2/3+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments