Answer to Question #131179 in Calculus for mae

Question #131179
1. ∫ lnx/(1+x^2) dx
2. ∫ sinx/cosx(1+cos^2x) dx
1
Expert's answer
2020-09-01T16:07:05-0400

1. lnxx2+1=d(lnxx2+1)=x2+1x(x2+1)x2x(x2+1)2dx=1x2(1+x2)xdx=ln(xx2+1)x1x21+x2dx=ln(xx2+1)x11+x2dx+x21+x2dx=ln(xx2+1)xarctanx+x2+111+x2dx=ln(xx2+1)xarctanx+x2+11+x2dx1x2+1dx=ln(xx2+1)x2arctanx+x+C\int \ln{\frac{x}{x^2+1}} = |d(\ln{\frac{x}{x^2+1}})= \frac{x^2+1}{x} \frac{(x^2+1)-x\cdot 2x}{(x^2+1)^2}dx= \frac{1-x^2}{(1+x^2)x}dx| = ln(\frac{x}{x^2+1}) \cdot x - \int \frac{1-x^2}{1+x^2}dx = ln(\frac{x}{x^2+1}) \cdot x - \int \frac{1}{1+x^2}dx + \int \frac{x^2}{1+x^2}dx =ln(\frac{x}{x^2+1}) \cdot x -\arctan{x} + \int \frac{x^2+1-1}{1+x^2}dx =ln(\frac{x}{x^2+1}) \cdot x -\arctan{x} + \int \frac{x^2+1}{1+x^2}dx - \int \frac{1}{x^2+1}dx = ln(\frac{x}{x^2+1}) \cdot x -2 \arctan{x}+ x +C

2. sinxcosx(1+cos2x)dx=sinx(1cosxcosx1+cos2x)dx=\int \frac{sinx}{cosx(1+cos^2x)}dx=\int sinx (\frac{1}{cosx}-\frac{cosx}{1+cos^2x})dx=

=sinxcosxdxsinxcosx1+cos2xdx==\int \frac{sinx}{cosx}dx-\int \frac{sinx\cdot cosx}{1+cos^2x}dx=

=1cosxdcosx+cosx1+cos2xdcosx==\int -\frac{1}{cosx}dcosx+\int \frac{cosx}{1+cos^2x}dcosx=

=ln(cosx)+12(1+cos2x)dcos2x==-ln(cosx)+\int \frac{1}{2(1+cos^2x)}dcos^2x=

=ln(cosx)+ln(1+cos2x)+C=-ln(cosx)+ln(1+cos^2x) +C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment