1. "\\int \\ln{\\frac{x}{x^2+1}} = |d(\\ln{\\frac{x}{x^2+1}})= \\frac{x^2+1}{x} \\frac{(x^2+1)-x\\cdot 2x}{(x^2+1)^2}dx= \\frac{1-x^2}{(1+x^2)x}dx| = ln(\\frac{x}{x^2+1}) \\cdot x - \\int \\frac{1-x^2}{1+x^2}dx =\nln(\\frac{x}{x^2+1}) \\cdot x - \\int \\frac{1}{1+x^2}dx + \\int \\frac{x^2}{1+x^2}dx =ln(\\frac{x}{x^2+1}) \\cdot x -\\arctan{x} + \\int \\frac{x^2+1-1}{1+x^2}dx =ln(\\frac{x}{x^2+1}) \\cdot x -\\arctan{x} + \\int \\frac{x^2+1}{1+x^2}dx - \\int \\frac{1}{x^2+1}dx = ln(\\frac{x}{x^2+1}) \\cdot x -2 \\arctan{x}+ x +C"
2. "\\int \\frac{sinx}{cosx(1+cos^2x)}dx=\\int sinx (\\frac{1}{cosx}-\\frac{cosx}{1+cos^2x})dx="
"=\\int \\frac{sinx}{cosx}dx-\\int \\frac{sinx\\cdot cosx}{1+cos^2x}dx="
"=\\int -\\frac{1}{cosx}dcosx+\\int \\frac{cosx}{1+cos^2x}dcosx="
"=-ln(cosx)+\\int \\frac{1}{2(1+cos^2x)}dcos^2x="
"=-ln(cosx)+ln(1+cos^2x) +C"
Comments
Leave a comment