1. ∫lnx2+1x=∣d(lnx2+1x)=xx2+1(x2+1)2(x2+1)−x⋅2xdx=(1+x2)x1−x2dx∣=ln(x2+1x)⋅x−∫1+x21−x2dx=ln(x2+1x)⋅x−∫1+x21dx+∫1+x2x2dx=ln(x2+1x)⋅x−arctanx+∫1+x2x2+1−1dx=ln(x2+1x)⋅x−arctanx+∫1+x2x2+1dx−∫x2+11dx=ln(x2+1x)⋅x−2arctanx+x+C
2. ∫cosx(1+cos2x)sinxdx=∫sinx(cosx1−1+cos2xcosx)dx=
=∫cosxsinxdx−∫1+cos2xsinx⋅cosxdx=
=∫−cosx1dcosx+∫1+cos2xcosxdcosx=
=−ln(cosx)+∫2(1+cos2x)1dcos2x=
=−ln(cosx)+ln(1+cos2x)+C
Comments
Leave a comment