Question #131053

A right circular cone is held with its apex facing downwards and is inscribed in a sphere with fixed radius 𝑘 cm within the interval 1 cm ≤ 𝑘 ≤ 5 cm and the distance from the base of the cone to the center of the sphere is 𝑥 cm.

a. Evaluate the maximum volume of the cone by assigning 𝑘 to a value within the given interval. Discuss the difference of use between the first derivative test and second derivative test to optimize the volume.

b. Water is poured into the cone at a rate of 10 m3s−1. Find the rate at which the water level is rising when the depth of the water is (𝑥 + 𝑘) − 3.


1
Expert's answer
2020-08-31T14:43:17-0400

a.


V=13πr2hV={1\over3}\pi r^2 h

Use the Pythagorean Theorem to the right triangle ΔBOD\Delta BOD


k2=x2+r2,0xkk^2=x^2+r^2 , 0\leq x\leq k

Then


r2=k2x2r^2=k^2-x^2

The height is


h=k+x  or  h=kxh=k+x \ \ or\ \ h=k-x

Let u=x,kuk.|u|=x, -k\leq u\leq k. Then


r2=k2u2,h=k+ur^2=k^2-u^2, h=k+u

V(u)=13π(k2u2)(k+u)V(u)={1\over3}\pi (k^2-u^2)(k+u)

V(u)=13π(k3+k2uku2u3)V(u)={1\over3}\pi(k^3+k^2u-ku^2-u^3)

Find the first derivative with respect to uu


V(u)=13π(0+k22ku3u2)=V'(u)={1\over3}\pi(0+k^2-2ku-3u^2)=

=13π(k22ku3u2)={1\over3}\pi(k^2-2ku-3u^2)

Find the critical number(s)


V(u)=0=>13π(k22ku3u2)=0V'(u)=0=>{1\over3}\pi(k^2-2ku-3u^2)=0

3u22ku+k2=0-3u^2-2ku+k^2=0

u=2k±(2k)24(3)(k2)2(3)=1±23ku=\dfrac{2k\pm \sqrt{(-2k)^2-4(-3)(k^2)}}{2(-3)}=\dfrac{-1\pm 2}{3}\cdot k

u1=k,u2=13ku_1=-k, u_2={1\over 3}k

Critical numbers: k,13k.-k, \dfrac{1}{3}k.

First Derivative Test

If <u<k,V(u)<0,V(u)<u<-k, V'(u)<0, V(u) decreases.

If k<u<13k,V(u)>0,V(u)-k<u<\dfrac{1}{3}k, V'(u)>0, V(u) increases.

If u>13k,V(u)<0,V(u)u>\dfrac{1}{3}k, V'(u)<0, V(u) decreases.


kuk-k\leq u\leq k


V(k)=13π(k3+k2(k)k(k)2(k)3)=0V(-k)={1\over3}\pi(k^3+k^2(-k)-k(-k)^2-(-k)^3)=0

V(13k)=13π(k3+k2(13k)k(13k)2(13k)3)=V(\dfrac{1}{3}k)={1\over3}\pi(k^3+k^2(\dfrac{1}{3}k)-k(\dfrac{1}{3}k)^2-(\dfrac{1}{3}k)^3)=

=3281πk3(cm3)=\dfrac{32}{81}\pi k^3(cm^3)

V(k)=13π(k3+k2(k)k(k)2(k)3)=0V(k)={1\over3}\pi(k^3+k^2(k)-k(k)^2-(k)^3)=0

The volume has the maximum with value of 3281k3\dfrac{32}{81}k^3 cm3 for kuk-k\leq u\leq k at u=13ku=\dfrac{1}{3}k .

Find the second derivative with respect to uu


V(u)=13π(02k6u)=23π(k+3u)V''(u)={1\over3}\pi(0-2k-6u)=-{2\over3}\pi(k+3u)


Second Derivative Test

Critical numbers: k,13k.-k, \dfrac{1}{3}k.


V(k)=23π(k+3(k))=43πk>0,k>0V''(-k)=-{2\over3}\pi(k+3(-k))={4\over3}\pi k>0, k>0

V(13k)=23π(k+3(13k))=43πk<0,k>0V''(\dfrac{1}{3}k)=-{2\over3}\pi(k+3(\dfrac{1}{3}k))=-{4\over3}\pi k<0, k>0

The volume has the maximum with value of 3281k3\dfrac{32}{81}k^3 cm3 for kuk-k\leq u\leq k at u=13ku=\dfrac{1}{3}k .

Therefore Vmax=3281k3V_{max}=\dfrac{32}{81}k^3 cm3 when we have case 1(Figure 1).We see than VmaxV_{max} increases when kk increases.


Vmax=400081cm3,k=5 cm,x=53 cmV_{max}=\dfrac{4000}{81}cm^3, k=5 \ cm, x=\dfrac{5}{3}\ cm

The difference is that the firstrivative test always determines whether a function has a local maximum, a local minimum, or neither; however, the second derivative test fails to yield a conclusion when y'' is zero at a critical value. If that is the case, you will have to apply the first derivative test to draw a conclusion.


b.

Let q(t)=q(t)= the height of the cone formed by water at time tt , p(t)=p(t)= the radius of the base of the cone formed by water at time tt

We have that the volume of water is


V(t)=13πp2qV(t)={1\over3}\pi p^2q

From the similar triangles


rh=pq\dfrac{r}{h}=\dfrac{p}{q}

Solve for pp


p=rhqp=\dfrac{r}{h}\cdot q

Substitute


V(t)=13π(rhq)2q=πr23h2q3V(t)={1\over3}\pi (\dfrac{r}{h}\cdot q)^2q ={\pi r^2\over3h^2}q^3

V(t)=π(k2u2)3(k+u)2q3V(t)={\pi (k^2-u^2)\over3(k+u)^2}q^3

V(t)=π(ku)3(k+u)q3V(t)={\pi (k-u)\over3(k+u)}q^3

Differentiate both sides with respect to tt


ddt(V)=ddt(π(ku)3(k+u)q3)\dfrac{d}{dt}\big(V\big)=\dfrac{d}{dt}\big({\pi (k-u)\over3(k+u)}q^3\big)

Use the Chain Rule


dVdt=π(ku)k+uq2dqdt\dfrac{dV}{dt}={\pi (k-u)\over k+u}q^2\dfrac{dq}{dt}


Solve for dqdt\dfrac{dq}{dt}


dqdt=k+uπ(ku)q2dVdt\dfrac{dq}{dt}=\dfrac{k+u}{\pi(k-u)q^2}\cdot \dfrac{dV}{dt}

Given

dVdt=10m3s1=107cm3s1\dfrac{dV}{dt}=10m^3\cdot s^{-1}=10^7 cm^3\cdot s^{-1}

q=x+k3>0q=x+k-3>0

I don't believe that dVdt=10m3s1.\dfrac{dV}{dt}=10m^3\cdot s^{-1}. This is the very big rate.

Suppose dVdt=10cm3s1\dfrac{dV}{dt}=10cm^3\cdot s^{-1}

Then for q=x+k3>0q=x+k-3>0

In case 1 (FIgure 1)

u=xu=x


dqdt=k+xπ(kx)(x+k3)2(10 cms1)\dfrac{dq}{dt}=\dfrac{k+x}{\pi(k-x)(x+k-3)^2}\cdot (10\ cm\cdot s^{-1})

In case 2 (FIgure 2)

u=xu=-x


dqdt=kxπ(k+x)(x+k3)2(10 cms1)\dfrac{dq}{dt}=\dfrac{k-x}{\pi(k+x)(x+k-3)^2}\cdot (10\ cm\cdot s^{-1})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS