Answer to Question #131102 in Calculus for Edition

Question #131102


2. Y = e^-2x . Sin 3x show that

d^2y/dx^2 = -13y - 4 dy/dx


1
Expert's answer
2020-08-31T17:22:56-0400

2.

y=e2xsin3xy=e^{-2x}sin3x

y=3e2xcos3x2e2xsin3xy'=3e^{-2x}cos3x-2e^{-2x}sin3x

y=9e2xsin3x6e2xcos3x6e2xcos3x+4e2xsin3x=y''=-9e^{-2x}sin3x-6e^{-2x}cos3x-6e^{-2x}cos3x+4e^{-2x}sin3x=

=5e2xsin3x12e2xcos3x=-5e^{-2x}sin3x-12e^{-2x}cos3x

Then:

13y4y=13e2xsin3x4(3e2xcos3x2e2xsin3x)=-13y - 4y'=-13e^{-2x}sin3x-4(3e^{-2x}cos3x-2e^{-2x}sin3x)=

=13e2xsin3x12e2xcos3x+8e2xsin3x==-13e^{-2x}sin3x-12e^{-2x}cos3x+8e^{-2x}sin3x=

=5e2xsin3x12e2xcos3x=y=-5e^{-2x}sin3x-12e^{-2x}cos3x=y''


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment