Let xn=n1,n∈Z+
xn→0+lim(1+xn)xn1=n→∞lim(1+n1)n Use Newton's Binomial formula
(1+n1)n=1+n⋅n1+1⋅2n(n−1)⋅n21+
+1⋅2⋅3n(n−1)(n−2)⋅n31+...+1⋅2⋅...⋅nn(n−1)...(1)⋅nn1>1+1=2
Let f(x)=ln(x), then f′(x)=1/x. Thus f′(1)=1/1=1.
From the definition of a derivative as a limit, we have
f′(1)=h→0limhf(1+h)−f(1)=
=x→0limxf(1+x)−f(1)=x→0limxln(1+x)−ln(1)=
=x→0limxln(1+x)=x→0limln(1+x)x1 Because f′(1)=1, we have
x→0limln(1+x)x1=1Theorem
If f is continuous at b and x→alimg(x)=b, then x→alimf(g(x))=f(b)
x→alimf(g(x))=f(x→alimg(x)) Since the exponential function is continuous, we have
e=e1=ex→0limln(1+x)x1=x→0limeln(1+x)x1=
=x→0lim(1+x)x1 Therefore
x→0lim(1+x)x1=e
x→0+lim(1+x)x1=e
Comments