A function is concave up for the intervals where d2f(x)/dx2 >0
from f(x) =6/x2 +6, df(x)/dx = -12x-3 or df(x)/dx =-12/x3,
d2f(x)/dx2 = 36x-4 or d2f(x)/dx2 = 36/x4 +0 >0
12/x4 >0 is true.
A function f(x)=6/x2+6 is concave up for every "x \\neq0."
A function is concave down for the intervals where d2f(x)/dx2 <0
from f(x) =6/x2 +6, df(x)/dx = -12x-3 or df(x)/dx =-12/x3
d2f(x)/dx2 = 36x-4 or d2f(x)/dx2 = 36/x4 +0 <0
12/x4 cannot be negative, hence the function f(x) is not concave down.
Comments
Leave a comment