Answer to Question #131176 in Calculus for miya

Question #131176
1. ∫sin^43xcos^23xdx
2. ∫x^5 sqrt of 1-x^3 dx
1
Expert's answer
2020-09-01T18:20:26-0400

sin4(3x)cos2(3x)dx=sin2(3x)(sin2(3x)cos2(3x))dx=(1/2)(1cos(6x))(1/4)sin2(6x)dx=(1/8)(1cos(6x))(1/2)(1cos(12x))dx=(1/16)(1cos(6x)cos(12x)+cos(6x)cos(12x))dx=(1/16)(1cos(6x)cos(12x)+cos(6x)cos(12x))dx=(1/16)(1cos(6x)cos(12x)+(1/2)cos(6x)+(1/2)cos(18x))dx=(1/16)(1(1/2)cos(6x)cos(12x)+(1/2)cos(18x))dx=(1/16)(x(1/12)sin(6x)(1/12)sin(12x)+(1/36)sin(18x))+C=x/16(1/192)sin(6x)(1/192)sin(12x)+(1/576)sin(18x)+C∫sin^4(3x)cos^2(3x)dx=∫sin^2(3x)* (sin^2(3x)*cos^2(3x))dx=∫(1/2)*(1-cos(6x))*(1/4)*sin^2(6x) dx=∫(1/8)*(1-cos(6x))*(1/2)*(1-cos(12x))dx=∫(1/16)*(1-cos(6x)-cos(12x)+ cos(6x)*cos(12x))dx=∫(1/16)*(1-cos(6x)-cos(12x)+ cos(6x)*cos(12x))dx=∫(1/16)*(1-cos(6x)-cos(12x)+ (1/2)*cos(6x)+(1/2)*cos(18x))dx=∫(1/16)*(1-(1/2)*cos(6x)-cos(12x)+(1/2)*cos(18x))dx=(1/16)*(x-(1/12)*sin(6x)-(1/12)*sin(12x)+(1/36)*sin(18x))+C=x/16-(1/192)*sin(6x)-(1/192)*sin(12x)+(1/576)*sin(18x)+Cx5(1x3)(1/2)dx=x3x2(1x3)(1/2)dx=(1u)u(1/2)d(u/(3))=1/3u(1/2)u(3/2)du=1/3(u(3/2)/(3/2)u(5/2)/(5/2))+C=(2/9)u(3/2)+(2/15)u(5/2)+C=(2/9)(1x3)(3/2)+(2/15)(1x3)(5/2)+C∫x^5* (1-x^3)^(1/2) dx=∫x^3*x^2*(1-x^3)^(1/2) dx=∫(1-u)*u^(1/2) d(u/(-3))=-1/3∫u^(1/2)-u^(3/2) du=-1/3(u^(3/2)/(3/2)-u^(5/2)/(5/2))+C=-(2/9)*u^(3/2)+(2/15)*u^(5/2)+C=-(2/9)* (1-x^3)^(3/2)+(2/15)*(1-x^3)^(5/2)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment