∫sin4(3x)cos2(3x)dx=∫sin2(3x)∗(sin2(3x)∗cos2(3x))dx=∫(1/2)∗(1−cos(6x))∗(1/4)∗sin2(6x)dx=∫(1/8)∗(1−cos(6x))∗(1/2)∗(1−cos(12x))dx=∫(1/16)∗(1−cos(6x)−cos(12x)+cos(6x)∗cos(12x))dx=∫(1/16)∗(1−cos(6x)−cos(12x)+cos(6x)∗cos(12x))dx=∫(1/16)∗(1−cos(6x)−cos(12x)+(1/2)∗cos(6x)+(1/2)∗cos(18x))dx=∫(1/16)∗(1−(1/2)∗cos(6x)−cos(12x)+(1/2)∗cos(18x))dx=(1/16)∗(x−(1/12)∗sin(6x)−(1/12)∗sin(12x)+(1/36)∗sin(18x))+C=x/16−(1/192)∗sin(6x)−(1/192)∗sin(12x)+(1/576)∗sin(18x)+C∫x5∗(1−x3)(1/2)dx=∫x3∗x2∗(1−x3)(1/2)dx=∫(1−u)∗u(1/2)d(u/(−3))=−1/3∫u(1/2)−u(3/2)du=−1/3(u(3/2)/(3/2)−u(5/2)/(5/2))+C=−(2/9)∗u(3/2)+(2/15)∗u(5/2)+C=−(2/9)∗(1−x3)(3/2)+(2/15)∗(1−x3)(5/2)+C
Comments
Leave a comment