If "0\\leq t\\leq x", then "1+t^4\\leq 1+x^4" , hence
"1=\\frac{1}{1+0^4}\\geq\\frac{1}{1+t^4}\\geq\\frac{1}{1+x^4}," hence
"\\frac{1}{3}=\\frac{1}{x^3}\\intop_0^x t^2dt\\geq\\\\\n\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+t^4}dt\\geq\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+x^4}dt=\\frac{1}{3(1+x^4)}",
"\\lim\\limits_{x\\rightarrow+0}\\frac{1}{3}\\geq\\\\\n\\lim\\limits_{x\\rightarrow+0}\\frac{1}{x^3}\\intop_0^x\\frac{1}{1+t^4}dt\\geq\\\\\n\\lim\\limits_{x\\rightarrow+0}\\frac{1}{3(1+x^4)}=\\frac{1}{3(1+0)}=\\frac{1}{3},"
By The Squeeze Theorem
"\\lim\\limits_{x\\rightarrow+0}\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+t^4}dt=\\frac{1}{3}."
Similarly, if "x\\leq t\\leq 0", then "1+t^4\\leq 1+x^4" ,
hence
"1=\\frac{1}{1+0^4}\\geq\\frac{1}{1+t^4}\\geq\\frac{1}{1+x^4},"
hence for "x<0"
"\\frac{1}{3}=\\frac{1}{x^3}\\intop_0^x t^2dt=-\\frac{1}{x^3}\\intop_x^0 t^2dt\\geq\\\\\n-\\frac{1}{x^3}\\intop_x^0\\frac{t^2}{1+t^4}dt=\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+t^4}dt\\geq-\\frac{1}{x^3}\\intop_x^0\\frac{t^2}{1+x^4}dt=\\\\\n\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+x^4}dt=\\frac{1}{3(1+x^4)},"
hence
"\\lim\\limits_{x\\rightarrow-0}\\frac{1}{3}\\geq\\\\\n\\lim\\limits_{x\\rightarrow-0}\\frac{1}{x^3}\\intop_0^x\\frac{1}{1+t^4}dt\\geq\\\\\n\\lim\\limits_{x\\rightarrow-0}\\frac{1}{3(1+x^4)}=\\frac{1}{3(1+0)}=\\frac{1}{3},"
by The Squeeze Theorem
"\\lim\\limits_{x\\rightarrow-0}\\frac{1}{x^3}\\intop_0^x\\frac{t^2}{1+t^4}dt=\\frac{1}{3},"
hence
"\\lim\\limits_{x\\rightarrow0}\\frac{1}{x^3}\\intop_0^x\\frac{1}{1+t^4}dt=\\frac{1}{3}."
Answer: "\\frac{1}{3}."
Comments
Leave a comment