Answer to Question #131234 in Calculus for Moel Tariburu

Question #131234
Use an appropriate local linear approximation to estimate the value of (122)^2/3
1
Expert's answer
2020-09-01T12:39:20-0400
f(x)=x23f(x)=x^{\frac {2}{3}}

f(x0+Δx)f(x0)+d[f(x0)]f(x_0+\varDelta x)\approx f(x_0)+d[f(x_0)]


x0=125,Δx=3x_0=125, \varDelta x=-3


d[f(x0)]=f/(x0)×Δxd[f(x_0)]=f^/(x_0)\times \varDelta x


f/(x)=23x13f^/(x)=\frac {2}{3x^{\frac{1}{3}}}


d[f(x0)]=f/(x0)×Δx=215×(3)=0.4d[f(x_0)]=f^/(x_0)\times \varDelta x=\frac {2}{15} \times(-3)=-0.4


f(x0+Δx)f(x0)+d[f(x0)]250.4=24.6f(x_0+\varDelta x)\approx f(x_0)+d[f(x_0)] \\ \approx 25-0.4=24.6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
01.09.20, 19:39

Dear Shaheed, thank you for leaving a feedback.

Shaheed
01.09.20, 03:58

The answer given is no where close to the original root value of 24.59838269, can more simple steps be given with the most approximate value.

Leave a comment