Question #131180
Integral Calculus
1. ∫ x^4-2x^3+3x^2-x+3/x^3-2x^2+3x dx
1
Expert's answer
2020-08-31T17:56:04-0400

ANSWER

15x512x4+13x3+x232x2+K\dfrac {1}{5}x^5 - \dfrac {1}{2}x^4 + \dfrac {1}{3}x^3 + x^2 - \dfrac {3}{2x^2} + K


SOLUTION

(x42x3+3x2x+3x32x2+3x)dx\int (x^4 - 2x^3 + 3x^2 - x + \dfrac {3}{x^3} - 2x^2 + 3x) dx


Simplifying the expression by collecting like terms:


=[x42x3+(3x22x2)+(3xx)+3x3]dx= \int [x^4 - 2x^3 + (3x^2 - 2x^2) + (3x - x) + 3x^{-3}]dx

=(x42x3+x2+2x+3x3)dx= \int (x^4 - 2x^3 +x^2 + 2x + 3x^{-3}) dx


Solving the integral gives:


=x552x44+x33+2x22+3x22+K= \dfrac {x^5}{5} - \dfrac {2x^4}{4} + \dfrac {x^3}{3} + \dfrac {2x^2}{2} + \dfrac {3x^{-2}}{-2} + K



=15x512x4+13x3+x232x2+K= \dfrac {1}{5}x^5 - \dfrac {1}{2}x^4 + \dfrac {1}{3}x^3 + x^2 - \dfrac {3}{2x^2} + K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS