Question #124229
Find the limit of the function lim x->0 (sinx/x)^sinx/x-sinx
a:e^-1
b:1
c:e
d:+infinity
1
Expert's answer
2020-06-30T16:23:34-0400

Using L hopitals rule ,


lim x->0 esinxxsinxlnsinxxe^{\frac{sinx}{x-sinx}ln\frac{sinx}{x}}


limx->0elnsinxx{e^{ln\frac{sinx}{x}}} esinxxsinxe^{\frac{sinx}{x-sinx}}


limx->0 elnsinxx{e^{ln\frac{sinx}{x}}}limx->0 esinxxsinx)e^{\frac{sinx}{x-sinx}})


1*infinity= infinity


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS