(a) y=e2xsinx is a solution of a differential equation dx2d2y−4dxdy+5y=0 if it makes a true equatin when we plug it in.
At first we need to know what the first and the second derivatives are.
dxdy=(e2xsinx)′=2e2xsinx+e2xcosx.
dx2d2y=(2e2xsinx+e2xcosx)′=3e2xsinx+4e2xcosx.
Now we can rewrite the left hand side of our equation by replacing derivatives with their values and simplify the expression:
dx2d2y−4dxdy+5y=3e2xsinx+4e2xcosx−4(2e2xsinx+e2xcosx)+5e2xsinx=
=3e2xsinx+4e2xcosx−8e2xsinx−4e2xcosx)+5e2xsinx=
=(8e2xsinx−8e2xsinx)+(4e2xcosx−4e2xcosx)=0.
We see that the right hand side or our equation is also equals 0.
Since the left hand side and the right hand side are equal, that y=e2xsinx is a solution.
(b)
(i) ln(1+sin2x) is a composite function, so we use the chain rule:
dxd[f(g(x))]=f′(g(x))g′(x).
dxd[ln(1+sin2x)]=1+sin2x1(1+sin2x)′=1+sin2x12sinx(sinx)′=
=1+sin2x12sinxcosx=1+sin2xsin2x.
(ii) We'll use a logarithmic differentiation.
y=xx, hence lny=ln(xx)=xlnx.
Next we differentiate this expression using the chain rule:
(lny)′=(xlnx)′,
y1y′=(xlnx)′,
y′=y(xlnx)′=xx(1lnx+xx1)=xx(lnx+1).
Comments