Question #124212
(a) Verify that y = e2x sinx is a solution to the differential equation d2y dx2 −4
dy dx
+ 5y = 0.

(b) Differentiate the following functions with respect to x: (i) ln(1 + sin2 x) (ii) xx.
1
Expert's answer
2020-06-29T18:56:34-0400

(a) y=e2xsinxy=e^{2x} sin x is a solution of a differential equation d2ydx24dydx+5y=0\frac{d^2y}{ dx^2} −4\frac{dy}{ dx}+ 5y = 0 if it makes a true equatin when we plug it in.

At first we need to know what the first and the second derivatives are.

dydx=(e2xsinx)=2e2xsinx+e2xcosx.\frac{dy}{dx}=(e^{2x} sin x)\prime=2e^{2x} sin x+e^{2x} cos x.

d2ydx2=(2e2xsinx+e2xcosx)=3e2xsinx+4e2xcosx.\frac{d^2y}{dx^2}=(2e^{2x} sin x+e^{2x} cos x)\prime=3e^{2x} sin x+4e^{2x} cos x.

Now we can rewrite the left hand side of our equation by replacing derivatives with their values and simplify the expression:

d2ydx24dydx+5y=3e2xsinx+4e2xcosx4(2e2xsinx+e2xcosx)+5e2xsinx=\frac{d^2y}{ dx^2} −4\frac{dy}{ dx}+ 5y = 3e^{2x} sin x+4e^{2x} cos x-4(2e^{2x} sin x+e^{2x} cos x)+5e^{2x} sin x=

=3e2xsinx+4e2xcosx8e2xsinx4e2xcosx)+5e2xsinx==3e^{2x} sin x+4e^{2x} cos x-8e^{2x} sin x-4e^{2x} cos x)+5e^{2x} sin x=

=(8e2xsinx8e2xsinx)+(4e2xcosx4e2xcosx)=0.=(8e^{2x} sin x-8e^{2x} sin x)+(4e^{2x} cos x-4e^{2x} cos x)=0.

We see that the right hand side or our equation is also equals 0.

Since the left hand side and the right hand side are equal, that y=e2xsinxy=e^{2x} sin x is a solution.

(b)

(i) ln(1+sin2x)ln(1 + sin^2 x) is a composite function, so we use the chain rule:

ddx[f(g(x))]=f(g(x))g(x).\frac{d}{dx}[f(g(x))]=f\prime(g(x))g\prime(x).

ddx[ln(1+sin2x)]=11+sin2x(1+sin2x)=11+sin2x2sinx(sinx)=\frac{d}{dx}[ln(1 + sin^2 x)]=\frac{1}{1+sin^2 x}(1+sin^2 x)\prime=\frac{1}{1+sin^2 x}2sin x(sin x)\prime=

=11+sin2x2sinxcosx=sin2x1+sin2x.=\frac{1}{1+sin^2 x}2sin xcos x=\frac{sin2x}{1+sin^2 x}.

(ii) We'll use a logarithmic differentiation.

y=xx,y=x^x, hence lny=ln(xx)=xlnx.ln y=ln(x^x)=x ln x.

Next we differentiate this expression using the chain rule:

(lny)=(xlnx),(ln y)\prime=(x ln x)\prime,

1yy=(xlnx),\frac{1}{y}y\prime=(x ln x)\prime,

y=y(xlnx)=xx(1lnx+x1x)=xx(lnx+1).y\prime=y(x ln x)\prime=x^x(1ln x+x\frac{1}{x})=x^x(ln x+1).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS