(a) "y=e^{2x} sin x" is a solution of a differential equation "\\frac{d^2y}{ dx^2} \u22124\\frac{dy}{ dx}+ 5y = 0" if it makes a true equatin when we plug it in.
At first we need to know what the first and the second derivatives are.
"\\frac{dy}{dx}=(e^{2x} sin x)\\prime=2e^{2x} sin x+e^{2x} cos x."
"\\frac{d^2y}{dx^2}=(2e^{2x} sin x+e^{2x} cos x)\\prime=3e^{2x} sin x+4e^{2x} cos x."
Now we can rewrite the left hand side of our equation by replacing derivatives with their values and simplify the expression:
"\\frac{d^2y}{ dx^2} \u22124\\frac{dy}{ dx}+ 5y = 3e^{2x} sin x+4e^{2x} cos x-4(2e^{2x} sin x+e^{2x} cos x)+5e^{2x} sin x="
"=3e^{2x} sin x+4e^{2x} cos x-8e^{2x} sin x-4e^{2x} cos x)+5e^{2x} sin x="
"=(8e^{2x} sin x-8e^{2x} sin x)+(4e^{2x} cos x-4e^{2x} cos x)=0."
We see that the right hand side or our equation is also equals 0.
Since the left hand side and the right hand side are equal, that "y=e^{2x} sin x" is a solution.
(b)
(i) "ln(1 + sin^2 x)" is a composite function, so we use the chain rule:
"\\frac{d}{dx}[f(g(x))]=f\\prime(g(x))g\\prime(x)."
"\\frac{d}{dx}[ln(1 + sin^2 x)]=\\frac{1}{1+sin^2 x}(1+sin^2 x)\\prime=\\frac{1}{1+sin^2 x}2sin x(sin x)\\prime="
"=\\frac{1}{1+sin^2 x}2sin xcos x=\\frac{sin2x}{1+sin^2 x}."
(ii) We'll use a logarithmic differentiation.
"y=x^x," hence "ln y=ln(x^x)=x ln x."
Next we differentiate this expression using the chain rule:
"(ln y)\\prime=(x ln x)\\prime,"
"\\frac{1}{y}y\\prime=(x ln x)\\prime,"
"y\\prime=y(x ln x)\\prime=x^x(1ln x+x\\frac{1}{x})=x^x(ln x+1)."
Comments
Leave a comment