The function should be continuous, so limx→1+(ax+b)=f(1) and limx→3+(3x−8)=f(3).\lim_{x\to 1+} (ax+b) = f(1) \;\; \mathrm{and} \;\; \lim_{x\to 3+} (3x-8) = f(3).limx→1+(ax+b)=f(1)andlimx→3+(3x−8)=f(3). Therefore, a+b=1+4, 9−8=3a+b.a+b = 1+4, \;\; 9-8 = 3a+b.a+b=1+4,9−8=3a+b.
a+b=5, 1=3a+b.a+b=5, \;\; 1=3a+b.a+b=5,1=3a+b. Solving this system, we get , a=−2a = -2a=−2 and b=7.b=7.b=7.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments