V=π∫02(6−y1)2dx−π∫02(6−y2)2dxV=\pi\int_{0}^{2}(6-y_1)^2dx-\pi\int_{0}^{2}(6-y_2)^2dxV=π∫02(6−y1)2dx−π∫02(6−y2)2dx where y1=x2,y2=4x−x2y_1=x^2,y_2=4x-x^2y1=x2,y2=4x−x2 hence
V=π∫02((6−x2)2−(6−4x+x2)2)dx≈π⋅2113V=\pi\int_{0}^{2}((6-x^2)^2-(6-4x+x^2)^2)dx\approx\pi\sdot21\frac{1}{3}V=π∫02((6−x2)2−(6−4x+x2)2)dx≈π⋅2131
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments