(i) Given d y d t = ( 1 − 2 t ) y 2 \frac{dy}{dt} = (1-2t)y^2 d t d y = ( 1 − 2 t ) y 2 and y = 1 c − t + t 2 y = \frac{1}{c-t+t^2} y = c − t + t 2 1
Differentiating y with respect to x,
d y d x = − ( 1 c − t + t 2 ) 2 ( − 1 + 2 t ) = ( 1 c − t + t 2 ) 2 ( 1 − 2 t ) \frac{dy}{dx} = -(\frac{1}{c-t+t^2})^2(-1+2t) = (\frac{1}{c-t+t^2})^2(1-2t) d x d y = − ( c − t + t 2 1 ) 2 ( − 1 + 2 t ) = ( c − t + t 2 1 ) 2 ( 1 − 2 t )
replacing value of y
we obtain, d y d t = ( 1 − 2 t ) y 2 \frac{dy}{dt} = (1-2t)y^2 d t d y = ( 1 − 2 t ) y 2
(ii) Given d y d t = y 2 s i n ( t ) \frac{dy}{dt} = y^2sin(t) d t d y = y 2 s in ( t ) y = 1 c + c o s t y = \frac{1}{c+cost} y = c + cos t 1
differentiating both sides with respect to x,
d y d t = − ( 1 c + c o s t ) 2 ( − s i n t ) = ( 1 c + c o s t ) 2 ( s i n t ) \frac{dy}{dt} = -(\frac{1}{c+cost})^2(-sint) = (\frac{1}{c+cost})^2(sint) d t d y = − ( c + cos t 1 ) 2 ( − s in t ) = ( c + cos t 1 ) 2 ( s in t )
replacing value of y with x
we obtain, d y d t = y 2 s i n ( t ) \frac{dy}{dt} = y^2sin(t) d t d y = y 2 s in ( t )
(iii) ∫ 0 1 x 2 ( 4 − x 2 ) 3 d x \int_0^1 x^2 (\sqrt{4-x^2})^3dx ∫ 0 1 x 2 ( 4 − x 2 ) 3 d x
let x = 2 s i n ( u ) x = 2 s i n ( u ) x = 2sin(u)x=2sin(u) x = 2 s in ( u ) x = 2 s in ( u ) then d x = 2 c o s ( u ) d u dx = 2cos(u) du d x = 2 cos ( u ) d u
Let us solve integration first without limit
= ∫ 8 c o s ( u ) s i n 2 ( u ) ( 4 − 4 s i n 2 ( u ) ) 3 / 2 d u =\int 8cos(u)sin^2(u)(4-4sin^2(u))^{3/2}du = ∫ 8 cos ( u ) s i n 2 ( u ) ( 4 − 4 s i n 2 ( u ) ) 3/2 d u
= ∫ 8 c o s ( u ) s i n 2 ( u ) ( 4 c o s 2 ( u ) ) 3 / 2 d u =\int 8cos(u)sin^2(u)(4cos^2(u))^{3/2}du = ∫ 8 cos ( u ) s i n 2 ( u ) ( 4 co s 2 ( u ) ) 3/2 d u
= ∫ 64 c o s 4 ( u ) s i n 2 ( u ) d u = \int 64cos^4(u)sin^2(u)du = ∫ 64 co s 4 ( u ) s i n 2 ( u ) d u
= ∫ 64 c o s 6 ( u ) ( 1 − c o s 2 ( u ) ) d u = \int 64cos^6(u)(1-cos^2(u))du = ∫ 64 co s 6 ( u ) ( 1 − co s 2 ( u )) d u
integrating it we get,
= − x ( 4 − x 2 ) 5 / 2 6 + x ( 4 − x 2 ) 3 / 2 6 + x ( 4 − x 2 ) 1 / 2 + 4 a s i n ( x 2 ) + C =-\frac{x(4-x^2)^{5/2}}{6} + \frac{x(4-x^2)^{3/2}}{6}+x(4-x^2)^{1/2} + 4asin(\frac{x}{2}) + C = − 6 x ( 4 − x 2 ) 5/2 + 6 x ( 4 − x 2 ) 3/2 + x ( 4 − x 2 ) 1/2 + 4 a s in ( 2 x ) + C
putting the limits, we get
∫ 0 1 x 2 ( 4 − x 2 ) 3 d x = 2 π 3 \int_0^1 x^2 (\sqrt{4-x^2})^3dx = \frac{2\pi}{3} ∫ 0 1 x 2 ( 4 − x 2 ) 3 d x = 3 2 π
Comments