(i)∫ xln(x+1)dx
= ln(x+1)∫ xdx - ∫[dxd(ln(x+1))∫xdx]dx
= 2x2ln(x+1) - ∫2(x+1)x2 dx
= 2x2ln(x+1) - ∫2(x+1)x2−1+1dx
= 2x2ln(x+1)
- 21 [∫(x+1)x2−1dx+∫(x+1)1dx]
= 2x2ln(x+1) - 21 [ ∫(x-1)dx+ ∫(x+1)1dx ]
= 2x2ln(x+1) - 21 [ 2x2 - x + ln(x+1)] + C
= 2x2ln(x+1) - 21 2x2−2x - 2ln(x+1) + C
= 2(x2−1)ln(x+1)−4x2−2x+ C where C is integration constant.
(ii)
I = ∫ sin 3(lnx) cos 2(lnx) x dx
So 2I = ∫ 2 sin 3(lnx) cos 2(lnx) x dx
= ∫ x[sin 5(lnx) + sin (lnx)]dx
= ∫ xsin 5(lnx)dx + ∫xsin (lnx)dx
= I5 + I1 (let)
Where I5 = ∫ xsin 5(lnx)dx
and I1 = ∫ xsin (lnx)dx
Now let us find a general formula for Im= ∫ xsin m(lnx)dx
Im=∫ xsin m(lnx)dx
Im = sin m(lnx) ∫ xdx −
∫ [dxd(sinm(lnx))∫xdx]dx
Im = 2x2sinm(lnx)−∫xmcosm(lnx)2x2dx
Im = 2x2sinm(lnx)− 2m∫xcosm(lnx)dx
Im = 2x2sinm(lnx)− 2m[cosm(lnx)∫xdx - ∫(dxd(cosm(lnx))∫xdx)]
Im = 2x2sinm(lnx)− 2m [2x2cosm(lnx)− ∫−xmsinm(lnx)2x2dx]
Im = 2x2sinm(lnx) - 2m [2x2cosm(lnx) + 2m ∫ x sin m(lnx)dx]
Im = 2x2sinm(lnx) - 2m 2x2cosm(lnx) - 4m2 Im
So (1+4m2) Im = 4x2[2sinm(lnx)−mcosm(lnx)]
So Im = m2+4x2[2sinm(lnx)−mcosm(lnx)]
So putting m = 5 we get
I5= 52+4x2[2sin5(lnx)−5cos5(lnx)]
= 29x2[2sin5(lnx)−5cos5(lnx)]
and putting m = 1 we get
I1= 12+4x2[2sin(lnx)−cos(lnx)]
= 5x2[2sin(lnx)−cos(lnx)]
So 2I = 29x2[2sin5(lnx)−5cos5(lnx)] + 5x2[2sin(lnx)−cos(lnx)]
=> I = 58x2[2sin5(lnx)−5cos5(lnx)] + 10x2[2sin(lnx)−cos(lnx)] + C
So ∫ sin 3(lnx) cos 2(lnx) x dx
= 58x2[2sin5(lnx)−5cos5(lnx)] + 10x2[2sin(lnx)−cos(lnx)] + C
where C is integration constant
Comments