"(i) \\int" xln(x+1)dx
= ln(x+1)"\\int" xdx - "\\int [\\frac{d}{dx}(ln(x+1)) \\int xdx]dx"
= "\\frac {x^2ln(x+1)}{2}" - "\\int \\frac{x^2}{2(x+1)}" dx
= "\\frac {x^2ln(x+1)}{2}" - "\\int \\frac{x^2-1+1}{2(x+1)}dx"
= "\\frac {x^2ln(x+1)}{2}"
- "\\frac{1}{2}" "[\\int \\frac{x^2-1}{(x+1)}dx + \\int \\frac{1}{(x+1)}dx]"
= "\\frac {x^2ln(x+1)}{2}" - "\\frac{1}{2}" [ "\\int"(x-1)dx+ "\\int\\frac{1}{(x+1)}dx" ]
= "\\frac {x^2ln(x+1)}{2}" - "\\frac{1}{2}" [ "\\frac{x^2}{2}" - x + ln(x+1)] + C
= "\\frac {x^2ln(x+1)}{2}" - "\\frac{1}{2}" "\\frac{x^2-2x}{2}" - "\\frac {ln(x+1)}{2}" + C
= "\\frac {(x^2-1)ln(x+1)}{2} - \\frac{x^2-2x}{4} +" C where C is integration constant.
(ii)
I = "\\int" sin 3(lnx) cos 2(lnx) x dx
So 2I = "\\int" 2 sin 3(lnx) cos 2(lnx) x dx
= "\\int" x[sin 5(lnx) + sin (lnx)]dx
= "\\int" xsin 5(lnx)dx + "\\int"xsin (lnx)dx
= I5 + I1 (let)
Where I5 = "\\int" xsin 5(lnx)dx
and I1 = "\\int" xsin (lnx)dx
Now let us find a general formula for "I_m=" "\\int" xsin m(lnx)dx
"I_m=\\int" xsin m(lnx)dx
"I_m" = sin m(lnx) "\\int" xdx "-"
"\\int" "[\\frac{d}{dx}(sin m(lnx))\\int xdx]dx"
"I_m" = "\\frac{x^2}{2}sin m(lnx)-\\int \\frac{mcos m(lnx)}{x} \\frac {x^2}{2}dx"
"I_m" = "\\frac{x^2}{2}sin m(lnx)-" "\\frac{m}{2}\\int xcos m(lnx) dx"
"I_m" = "\\frac{x^2}{2}sin m(lnx)-" "\\frac {m}{2} [cos m(lnx)\\int xdx" - "\\int (\\frac{d}{dx}(cos m(lnx))\\int xdx)]"
"I_m" = "\\frac{x^2}{2}sin m(lnx) -" "\\frac{m}{2}" ["\\frac{x^2}{2}cos m(lnx)-" "\\int - \\frac{msin m(lnx)}{x} \\frac {x^2}{2}dx]"
"I_m" = "\\frac{x^2}{2}sin m(lnx)" - "\\frac{m}{2}" ["\\frac{x^2}{2}cos m(lnx)" + "\\frac{m}{2}" "\\int" x sin m(lnx)dx]
"I_m" = "\\frac{x^2}{2}sin m(lnx)" - "\\frac{m}{2}" "\\frac{x^2}{2}cos m(lnx)" - "\\frac{m^2}{4}" "I_m"
So "(1+\\frac{m^2}{4})" "I_m" = "\\frac{x^2}{4}[2sin m(lnx)-mcos m(lnx)]"
So "I_m" = "\\frac{x^2}{m^2+4}[2sin m(lnx)-mcos m(lnx)]"
So putting m = 5 we get
I5= "\\frac{x^2}{5^2+4}[2sin 5(lnx)-5cos 5(lnx)]"
= "\\frac{x^2}{29}[2sin 5(lnx)-5cos 5(lnx)]"
and putting m = 1 we get
I1= "\\frac{x^2}{1^2+4}[2sin (lnx)-cos (lnx)]"
= "\\frac{x^2}{5}[2sin (lnx)-cos (lnx)]"
So 2I = "\\frac{x^2}{29}[2sin 5(lnx)-5cos 5(lnx)]" + "\\frac{x^2}{5}[2sin (lnx)-cos (lnx)]"
=> I = "\\frac{x^2}{58}[2sin 5(lnx)-5cos 5(lnx)]" + "\\frac{x^2}{10}[2sin (lnx)-cos (lnx)]" + C
So "\\int" sin 3(lnx) cos 2(lnx) x dx
= "\\frac{x^2}{58}[2sin 5(lnx)-5cos 5(lnx)]" + "\\frac{x^2}{10}[2sin (lnx)-cos (lnx)]" + C
where C is integration constant
Comments
Leave a comment