Question #124209
Evaluate the following integrals: (i)Z xln(x + 1)dx [13 marks] (ii)Z sin3(lnx)cos2(lnx) x dx
1
Expert's answer
2020-06-29T15:16:04-0400

(i)(i) \int xln(x+1)dx

= ln(x+1)\int xdx - [ddx(ln(x+1))xdx]dx\int [\frac{d}{dx}(ln(x+1)) \int xdx]dx

= x2ln(x+1)2\frac {x^2ln(x+1)}{2} - x22(x+1)\int \frac{x^2}{2(x+1)} dx

= x2ln(x+1)2\frac {x^2ln(x+1)}{2} - x21+12(x+1)dx\int \frac{x^2-1+1}{2(x+1)}dx

= x2ln(x+1)2\frac {x^2ln(x+1)}{2}

- 12\frac{1}{2} [x21(x+1)dx+1(x+1)dx][\int \frac{x^2-1}{(x+1)}dx + \int \frac{1}{(x+1)}dx]

= x2ln(x+1)2\frac {x^2ln(x+1)}{2} - 12\frac{1}{2} [ \int(x-1)dx+ 1(x+1)dx\int\frac{1}{(x+1)}dx ]

= x2ln(x+1)2\frac {x^2ln(x+1)}{2} - 12\frac{1}{2} [ x22\frac{x^2}{2} - x + ln(x+1)] + C

= x2ln(x+1)2\frac {x^2ln(x+1)}{2} - 12\frac{1}{2} x22x2\frac{x^2-2x}{2} - ln(x+1)2\frac {ln(x+1)}{2} + C

= (x21)ln(x+1)2x22x4+\frac {(x^2-1)ln(x+1)}{2} - \frac{x^2-2x}{4} + C where C is integration constant.

(ii)

I = \int sin 3(lnx) cos 2(lnx) x dx

So 2I = \int 2 sin 3(lnx) cos 2(lnx) x dx

= \int x[sin 5(lnx) + sin (lnx)]dx

= \int xsin 5(lnx)dx + \intxsin (lnx)dx

= I5 + I1 (let)

Where I5 = \int xsin 5(lnx)dx

and I1 = \int xsin (lnx)dx

Now let us find a general formula for Im=I_m= \int xsin m(lnx)dx

Im=I_m=\int xsin m(lnx)dx

ImI_m = sin m(lnx) \int xdx -

\int [ddx(sinm(lnx))xdx]dx[\frac{d}{dx}(sin m(lnx))\int xdx]dx

ImI_m = x22sinm(lnx)mcosm(lnx)xx22dx\frac{x^2}{2}sin m(lnx)-\int \frac{mcos m(lnx)}{x} \frac {x^2}{2}dx

ImI_m = x22sinm(lnx)\frac{x^2}{2}sin m(lnx)- m2xcosm(lnx)dx\frac{m}{2}\int xcos m(lnx) dx

ImI_m = x22sinm(lnx)\frac{x^2}{2}sin m(lnx)- m2[cosm(lnx)xdx\frac {m}{2} [cos m(lnx)\int xdx - (ddx(cosm(lnx))xdx)]\int (\frac{d}{dx}(cos m(lnx))\int xdx)]

ImI_m = x22sinm(lnx)\frac{x^2}{2}sin m(lnx) - m2\frac{m}{2} [x22cosm(lnx)\frac{x^2}{2}cos m(lnx)- msinm(lnx)xx22dx]\int - \frac{msin m(lnx)}{x} \frac {x^2}{2}dx]

ImI_m = x22sinm(lnx)\frac{x^2}{2}sin m(lnx) - m2\frac{m}{2} [x22cosm(lnx)\frac{x^2}{2}cos m(lnx) + m2\frac{m}{2} \int x sin m(lnx)dx]

ImI_m = x22sinm(lnx)\frac{x^2}{2}sin m(lnx) - m2\frac{m}{2} x22cosm(lnx)\frac{x^2}{2}cos m(lnx) - m24\frac{m^2}{4} ImI_m

So (1+m24)(1+\frac{m^2}{4}) ImI_m = x24[2sinm(lnx)mcosm(lnx)]\frac{x^2}{4}[2sin m(lnx)-mcos m(lnx)]

So ImI_m = x2m2+4[2sinm(lnx)mcosm(lnx)]\frac{x^2}{m^2+4}[2sin m(lnx)-mcos m(lnx)]

So putting m = 5 we get

I5= x252+4[2sin5(lnx)5cos5(lnx)]\frac{x^2}{5^2+4}[2sin 5(lnx)-5cos 5(lnx)]

= x229[2sin5(lnx)5cos5(lnx)]\frac{x^2}{29}[2sin 5(lnx)-5cos 5(lnx)]

and putting m = 1 we get

I1= x212+4[2sin(lnx)cos(lnx)]\frac{x^2}{1^2+4}[2sin (lnx)-cos (lnx)]

= x25[2sin(lnx)cos(lnx)]\frac{x^2}{5}[2sin (lnx)-cos (lnx)]

So 2I = x229[2sin5(lnx)5cos5(lnx)]\frac{x^2}{29}[2sin 5(lnx)-5cos 5(lnx)] + x25[2sin(lnx)cos(lnx)]\frac{x^2}{5}[2sin (lnx)-cos (lnx)]

=> I = x258[2sin5(lnx)5cos5(lnx)]\frac{x^2}{58}[2sin 5(lnx)-5cos 5(lnx)] + x210[2sin(lnx)cos(lnx)]\frac{x^2}{10}[2sin (lnx)-cos (lnx)] + C

So \int sin 3(lnx) cos 2(lnx) x dx

= x258[2sin5(lnx)5cos5(lnx)]\frac{x^2}{58}[2sin 5(lnx)-5cos 5(lnx)] + x210[2sin(lnx)cos(lnx)]\frac{x^2}{10}[2sin (lnx)-cos (lnx)] + C

where C is integration constant








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS