Question #124219

Suppose a particle P is moving in the plane so that its coordinates are given by P(x,y), where x = 4cos2t, y = 7sin2t.

(i) By finding a,b ∈ R such that x2 a2 + y2 b2 = 1, show that P is travelling on an elliptical path.

(ii) Let L(t) be the distance from P to the origin. Obtain an expression for L(t).

(iii) How fast is the distance between P and the origin changing when t = π/8?[


1
Expert's answer
2020-07-01T15:04:26-0400

x=4cos 2t;y=7sin 2t    x4=cos 2t...(1)x = 4cos\ 2t; y = 7sin\ 2t\implies \frac{x}{4}=cos \ 2t...(1)y7=sin 2t...(2)\frac{y}{7}=sin\ 2t...(2)

(i) Squaring and adding equation (1) and (2), we get

(x4)2+(y7)2=cos2 2t+sin2 2t=1(\frac{x}{4})^2+(\frac{y}{7})^2=cos^2\ 2t+sin^2\ 2t=1

So the equation becomes (x242)+(y272)=1(\frac{x^2}{4^2})+(\frac{y^2}{7^2})=1

Hence,a=4;b=7.a=4;b=7.

(ii) L(t)=(x0)2+(y0)2=x2+y2L(t)=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}

L(t)=(4cos 2t)2+(7sin 2t)2L(t)=\sqrt{(4cos\ 2t)^2+(7sin\ 2t)^2} =16cos2 2t+49sin2 2t=\sqrt{16cos^2\ 2t+49sin^2\ 2t}

L(t)=16+(4916)sin2 2t=16+33sin2 2tL(t)=\sqrt{16+(49-16)sin^2 \ 2t}=\sqrt{16+33sin^2\ 2t}

(iii) dLdt=\frac{dL}{dt}= ddt(\frac{d}{dt}( 16+33sin2 2t)\sqrt{16+33sin^2\ 2t}) =12116+33sin2 2t33×2sin 2t cos 2t×2=\frac{1}{2}\frac{1}{\sqrt{16+33sin^2\ 2t}}33\times 2sin\ 2t\ cos \ 2t\times 2 =3316+33sin2 2tsin 4t=\frac{33}{\sqrt{16+33sin^2\ 2t}}sin\ 4t

On putting t=π8t=\frac{\pi}{8} ,

dLdt=\frac{dL}{dt}= 3316+33sin2 2π8sin 4π8=\frac{33}{\sqrt{16+33sin^2\ \frac{2\pi}{8}}}sin\ \frac{4\pi}{8}= 3316+33sin2 π4sin π2=\frac{33}{\sqrt{16+33sin^2\ \frac{\pi}{4}}}sin\ \frac{\pi}{2}= 3316+33(12)2=5.79\frac{33}{\sqrt{16+33(\frac{1}{\sqrt{2}})^2}}=5.79


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS