Suppose a particle P is moving in the plane so that its coordinates are given by P(x,y), where x = 4cos2t, y = 7sin2t.
(i) By finding a,b ∈ R such that x2 a2 + y2 b2 = 1, show that P is travelling on an elliptical path.
(ii) Let L(t) be the distance from P to the origin. Obtain an expression for L(t).
(iii) How fast is the distance between P and the origin changing when t = π/8?[
"x = 4cos\\ 2t; y = 7sin\\ 2t\\implies \\frac{x}{4}=cos \\ 2t...(1)""\\frac{y}{7}=sin\\ 2t...(2)"
(i) Squaring and adding equation (1) and (2), we get
"(\\frac{x}{4})^2+(\\frac{y}{7})^2=cos^2\\ 2t+sin^2\\ 2t=1"
So the equation becomes "(\\frac{x^2}{4^2})+(\\frac{y^2}{7^2})=1"
Hence,"a=4;b=7."
(ii) "L(t)=\\sqrt{(x-0)^2+(y-0)^2}=\\sqrt{x^2+y^2}"
"L(t)=\\sqrt{(4cos\\ 2t)^2+(7sin\\ 2t)^2}" "=\\sqrt{16cos^2\\ 2t+49sin^2\\ 2t}"
"L(t)=\\sqrt{16+(49-16)sin^2 \\ 2t}=\\sqrt{16+33sin^2\\ 2t}"
(iii) "\\frac{dL}{dt}=" "\\frac{d}{dt}(" "\\sqrt{16+33sin^2\\ 2t})" "=\\frac{1}{2}\\frac{1}{\\sqrt{16+33sin^2\\ 2t}}33\\times 2sin\\ 2t\\ cos \\ 2t\\times 2" "=\\frac{33}{\\sqrt{16+33sin^2\\ 2t}}sin\\ 4t"
On putting "t=\\frac{\\pi}{8}" ,
"\\frac{dL}{dt}=" "\\frac{33}{\\sqrt{16+33sin^2\\ \\frac{2\\pi}{8}}}sin\\ \\frac{4\\pi}{8}=" "\\frac{33}{\\sqrt{16+33sin^2\\ \\frac{\\pi}{4}}}sin\\ \\frac{\\pi}{2}=" "\\frac{33}{\\sqrt{16+33(\\frac{1}{\\sqrt{2}})^2}}=5.79"
Comments
Leave a comment