x=4cos 2t;y=7sin 2t⟹4x=cos 2t...(1)7y=sin 2t...(2)
(i) Squaring and adding equation (1) and (2), we get
(4x)2+(7y)2=cos2 2t+sin2 2t=1
So the equation becomes (42x2)+(72y2)=1
Hence,a=4;b=7.
(ii) L(t)=(x−0)2+(y−0)2=x2+y2
L(t)=(4cos 2t)2+(7sin 2t)2 =16cos2 2t+49sin2 2t
L(t)=16+(49−16)sin2 2t=16+33sin2 2t
(iii) dtdL= dtd( 16+33sin2 2t) =2116+33sin2 2t133×2sin 2t cos 2t×2 =16+33sin2 2t33sin 4t
On putting t=8π ,
dtdL= 16+33sin2 82π33sin 84π= 16+33sin2 4π33sin 2π= 16+33(21)233=5.79
Comments