V=V1−V2=V = V1 - V2 =V=V1−V2= π∫02(6−x2)2dx−π∫02(6−(4x−x2))2dx=\pi\int^2_0 (6 - x^2)^2 dx - \pi\int^2_0 (6 -(4x - x^2))^2 dx =π∫02(6−x2)2dx−π∫02(6−(4x−x2))2dx==π∫02((6−x2)2−(6−(4x−x2))2)dx=π∫02(6−x2−6+4x−x2)(6−x2+6−= \pi\int^2_0 ((6 - x^2)^2 - (6 -(4x - x^2))^2) dx = \pi\int^2_0 (6 - x^2 - 6 + 4x - x^2)(6 - x^2 + 6 -=π∫02((6−x2)2−(6−(4x−x2))2)dx=π∫02(6−x2−6+4x−x2)(6−x2+6−
−4x+x2)dx=π∫02(−2x2+4x)(12−4x)dx=- 4x + x^2) dx = \pi\int^2_0 (-2x^2 + 4x)(12 - 4x)dx =−4x+x2)dx=π∫02(−2x2+4x)(12−4x)dx= =π∫02(8x3−16x2−24x2+48x)dx=π(2x4−=\pi\int^2_0 (8x^3 - 16x^2 - 24x^2 + 48 x)dx = \pi (2x^4 -=π∫02(8x3−16x2−24x2+48x)dx=π(2x4− 40x3/3+24x2)∣02=40x^3/3 + 24x^2)|^2_0 =40x3/3+24x2)∣02=
=π(32−320/3+96)=π(128−320/3)== \pi (32 - 320/3 +96) = \pi (128 - 320/3) ==π(32−320/3+96)=π(128−320/3)= (384−320)π3=64π3\dfrac{(384-320)\pi}{3} = \dfrac{64\pi}{3}3(384−320)π=364π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments