a. f(x) = exp(-3x(2x) 0.5 −5(6−5x)4 )
Taking natural logarithm on both sides:
lnf(x)=−3x(2x) 0.5 - 20(6−5x)
or, lnf(x)=−3x(2x) 0.5 - 120+100x
=−3(2) 0.5x (1.5) −120+100x
Differentiating w.r.t x: −(1/f(x))∗d(f(x))/dx =−3∗(2) 0.5 * x (1.5+1)/(1.5+1) +100
or, (1/f(x))∗d(f(x))/dx=(−3∗(2) 0.5 * (x) (2.5) )*(2/5) +100
or, d(f(x))/dx= [(−6∗2 0.5 * x 2.5)/5+100] * exponent(−3x∗( 2x) 0.5 −20[6−5x] (Answer)
b) Z=∫ (x 3+1)/(3x5) dx
=∫[x3/(3x5)+1/(3x5)]dx
=∫[1/(3x2)+1/(3x5)]dx
=(1/3)∫[1/x2+1/x5]dx
=(1/3)[x (-2+1)/(-2+1) + x (-5+1)/(-5+1)] + C
=(1/3)[−(1/x)−1/(4x4)]+c
=−(1/3)[(1/x)+1/(4x4)]+c (Answer)
Comments
Leave a comment