Answer to Question #124215 in Calculus for desmond

Question #124215
a) Find f'(x) using logarithmic differentiation, where f(x) = e−3x√2x−5 (6−5x)4
.
(d) Evaluate the integralZ(x3 + 1)1/3x5dx.
1
Expert's answer
2020-07-01T17:20:23-0400

a. f(x) = exp(-3x(2x)x(2x) 0.5 5(65x)4- 5(6-5x)4 )

Taking natural logarithm on both sides:

lnf(x)=3x(2x)ln f(x) = -3x(2x) 0.5 - 20(65x)20(6-5x)

or, lnf(x)=3x(2x)ln f(x) = -3x(2x) 0.5 - 120+100x120 + 100x

=3(2)=-3(2) 0.5xx (1.5) 120+100x- 120 + 100x

Differentiating w.r.t x:x: (1/f(x))d(f(x))/dx-(1/f(x)) * d(f(x))/dx =3(2)= -3*(2) 0.5 * xx (1.5+1)/(1.5+1)/(1.5+1) +100+100

or, (1/f(x))d(f(x))/dx=(3(2)(1/f(x))*d(f(x))/dx=( -3*(2) 0.5 * (x)x) (2.5) )*(2/5)2/5) +100100

or, d(f(x))/dx=d(f(x))/dx = [(62[(-6*2 0.5 * xx 2.5)/5+100]/5 + 100] * exponent(3x(-3x * ( 2x)2x) 0.5 20[65x]-20[6-5x] (Answer)


b) Z=Z= \int (x(x 3+1)/(3x5)+1)/(3x^5) dxdx

=[x3/(3x5)+1/(3x5)]dx= \int[x^3/(3x^5) + 1/(3x^5)]dx

=[1/(3x2)+1/(3x5)]dx=\int[1/(3x^2) + 1/(3x^5)]dx

=(1/3)[1/x2+1/x5]dx=(1/3) \int[ 1/x^2+ 1/x^5]dx

=(1/3)[x=(1/3) [x (-2+1)/(-2+1) + xx (-5+1)/(-5+1)] + C

=(1/3)[(1/x)1/(4x4)]+c=(1/3)[-(1/x) - 1/(4x^4)] + c

=(1/3)[(1/x)+1/(4x4)]+c=-(1/3)[(1/x) + 1/(4x^4)] +c (Answer)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment