Question #124213
(b) Differentiate the following functions with respect to x: (i) ln(1 + sin2 x) (ii) xx.
(c) Evaluate the integralZ 2x3 −4x−8 x4 −x3 + 4x2 −4x dx.
1
Expert's answer
2020-06-30T17:57:38-0400

i) Let u(x)=1+sin2x.u(x) = 1 + \sin2x. Then ln(1+sin2x)=lnu(x).\ln(1+\sin 2x) = \ln u(x).

ddx(ln(1+sin2x))=ddx(lnu(x))=1u(x)u(x)   (by chain rule)                                 =11+sin2x2cos2x                                  =2cos2x1+sin2x\dfrac{d}{dx}(\ln(1+\sin 2x)) = \dfrac{d}{dx}(\ln u(x)) = \dfrac{1}{u(x)}\cdot u'(x)~~~(\text{by chain rule}) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \dfrac{1}{1+\sin2x}\cdot 2\cos2x\\~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \dfrac{2\cos2x}{1+\sin2x}


ii) The given function can be written as xx=elnxx=exlnx.x^x=e^{\ln x^{x}} = e^{x\ln x}. Let v(x)=xlnx.v(x) = x \ln x.

Therefore,

ddx(xx)=ddx(ev(x))               =ev(x)v(x)     (by chain rule)              =exlnx(x1x+lnx)  (using product rule)              =xx(1+lnx)\dfrac{d}{dx}(x^{x}) = \dfrac{d}{dx}(e^{v(x)})\\~\\~~~~~~~~~~~~~~=e^{v(x)}\cdot v'(x)~~~~~(\text{by chain rule})\\ ~~~~~~~~~~~~~~=e^{x \ln x} (x \cdot \frac{1}{x}+\ln x)~~(\text{using product rule})\\~~~~~~~~~~~~~~=x^{x}(1 + \ln x)


c)2x34x8x4x3+4x24xdx=2x32x4x(x1)(x2+4)dx.\displaystyle\int\dfrac{2x^{3}-4x-8}{x^{4}-x^{3}+4x^{2}-4x}dx = \displaystyle2\int\dfrac{x^{3}-2x-4}{x(x-1)(x^{2}+4)}dx.


Using partial fraction for the integrand,

x32x4x(x1)(x2+4)=Ax+Bx1+Cx+Dx2+4 x32x4=A(x1)(x2+4)+Bx(x2+4)+(Cx+D)(x2x)\dfrac{x^{3}-2x-4}{x(x-1)(x^{2}+4)}=\dfrac{A}{x}+\dfrac{B}{x-1}+\dfrac{Cx+D}{x^{2}+4}\\~\\ x^{3}-2x-4=A(x-1)(x^{2}+4)+Bx(x^{2}+4)+(Cx+D)(x^{2}-x)


Solving for A, B, C and D we get

A=1,B=1,C=1,D=2A = 1, B =-1, C = 1, D = 2


Thus,

2x34x8x4x3+4x24xdx=2(1x1x1+x+2x2+4)dx                                             =2(lnxln(x1))+2xx2+4dx+22x2+4dx                                             =2lnx2ln(x1)+ln(x2+4)+2arctan(x2)                                             =lnx2ln(x1)2+ln(x2+4)+2arctan(x2)                                             =ln(x2(x2+4)(x1)2)+2arctan(x2).\displaystyle\int\dfrac{2x^{3}-4x-8}{x^{4}-x^{3}+4x^{2}-4x}dx = \displaystyle 2\int\biggl(\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{x+2}{x^{2}+4}\biggr)dx\\~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\displaystyle 2 \biggl(\ln x -\ln (x-1)\biggr) + \int\dfrac{2x}{x^{2}+4}dx+2\int\dfrac{2}{x^{2}+4}dx\\~ \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=2\ln x - 2\ln (x-1)+ \ln(x^{2}+4)+2\arctan\bigg(\dfrac{x}{2}\bigg)\\~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\ln x^{2}-\ln(x-1)^{2}+\ln(x^{2}+4)+2\arctan\bigg(\dfrac{x}{2}\bigg)\\~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\ln\bigg(\dfrac{x^{2}(x^{2}+4)}{(x-1)^{2}}\bigg)+2\arctan\bigg(\dfrac{x}{2}\bigg).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS