i) Let "u(x) = 1 + \\sin2x." Then "\\ln(1+\\sin 2x) = \\ln u(x)."
"\\dfrac{d}{dx}(\\ln(1+\\sin 2x)) = \\dfrac{d}{dx}(\\ln u(x)) = \\dfrac{1}{u(x)}\\cdot u'(x)~~~(\\text{by chain rule}) \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \\dfrac{1}{1+\\sin2x}\\cdot 2\\cos2x\\\\~\\\\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \\dfrac{2\\cos2x}{1+\\sin2x}"
ii) The given function can be written as "x^x=e^{\\ln x^{x}} = e^{x\\ln x}." Let "v(x) = x \\ln x."
Therefore,
"\\dfrac{d}{dx}(x^{x}) = \\dfrac{d}{dx}(e^{v(x)})\\\\~\\\\~~~~~~~~~~~~~~=e^{v(x)}\\cdot v'(x)~~~~~(\\text{by chain rule})\\\\\n~~~~~~~~~~~~~~=e^{x \\ln x} (x \\cdot \\frac{1}{x}+\\ln x)~~(\\text{using product rule})\\\\~~~~~~~~~~~~~~=x^{x}(1 + \\ln x)"
c)"\\displaystyle\\int\\dfrac{2x^{3}-4x-8}{x^{4}-x^{3}+4x^{2}-4x}dx = \\displaystyle2\\int\\dfrac{x^{3}-2x-4}{x(x-1)(x^{2}+4)}dx."
Using partial fraction for the integrand,
"\\dfrac{x^{3}-2x-4}{x(x-1)(x^{2}+4)}=\\dfrac{A}{x}+\\dfrac{B}{x-1}+\\dfrac{Cx+D}{x^{2}+4}\\\\~\\\\\nx^{3}-2x-4=A(x-1)(x^{2}+4)+Bx(x^{2}+4)+(Cx+D)(x^{2}-x)"
Solving for A, B, C and D we get
"A = 1, B =-1, C = 1, D = 2"
Thus,
"\\displaystyle\\int\\dfrac{2x^{3}-4x-8}{x^{4}-x^{3}+4x^{2}-4x}dx = \\displaystyle 2\\int\\biggl(\\dfrac{1}{x}-\\dfrac{1}{x-1}+\\dfrac{x+2}{x^{2}+4}\\biggr)dx\\\\~\\\\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\\displaystyle 2 \\biggl(\\ln x -\\ln (x-1)\\biggr) + \\int\\dfrac{2x}{x^{2}+4}dx+2\\int\\dfrac{2}{x^{2}+4}dx\\\\~\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=2\\ln x - 2\\ln (x-1)+ \\ln(x^{2}+4)+2\\arctan\\bigg(\\dfrac{x}{2}\\bigg)\\\\~\\\\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\\ln x^{2}-\\ln(x-1)^{2}+\\ln(x^{2}+4)+2\\arctan\\bigg(\\dfrac{x}{2}\\bigg)\\\\~\\\\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\\ln\\bigg(\\dfrac{x^{2}(x^{2}+4)}{(x-1)^{2}}\\bigg)+2\\arctan\\bigg(\\dfrac{x}{2}\\bigg)."
Comments
Leave a comment