i) Let u(x)=1+sin2x. Then ln(1+sin2x)=lnu(x).
dxd(ln(1+sin2x))=dxd(lnu(x))=u(x)1⋅u′(x) (by chain rule) =1+sin2x1⋅2cos2x =1+sin2x2cos2x
ii) The given function can be written as xx=elnxx=exlnx. Let v(x)=xlnx.
Therefore,
dxd(xx)=dxd(ev(x)) =ev(x)⋅v′(x) (by chain rule) =exlnx(x⋅x1+lnx) (using product rule) =xx(1+lnx)
c)∫x4−x3+4x2−4x2x3−4x−8dx=2∫x(x−1)(x2+4)x3−2x−4dx.
Using partial fraction for the integrand,
x(x−1)(x2+4)x3−2x−4=xA+x−1B+x2+4Cx+D x3−2x−4=A(x−1)(x2+4)+Bx(x2+4)+(Cx+D)(x2−x)
Solving for A, B, C and D we get
A=1,B=−1,C=1,D=2
Thus,
∫x4−x3+4x2−4x2x3−4x−8dx=2∫(x1−x−11+x2+4x+2)dx =2(lnx−ln(x−1))+∫x2+42xdx+2∫x2+42dx =2lnx−2ln(x−1)+ln(x2+4)+2arctan(2x) =lnx2−ln(x−1)2+ln(x2+4)+2arctan(2x) =ln((x−1)2x2(x2+4))+2arctan(2x).
Comments