Let D={(x,y,z)∈R^3:1≤x≤3,0≤y≤ln(z),0≤z≤x}. The answer to ∭D e^yln(x)dV
is
Select one:
a. 13/9
b. 3/2
c. 5/9
d. -13/9
e. 2
f. 1/2
1
Expert's answer
2020-06-04T19:51:03-0400
∭Deyln(x)dv=∫13∫0x(∫0lnzeyln(x)dy)dzdx=∫13∫0x(ln(x)ey∣∣0lnz)dzdx=∫13∫0x(ln(x)(elnz−1))dzdx=∫13∫0x(ln(x)(z−1)))dzdx=∫13(ln(x)(21z2−z)∣∣0x)dx=∫13(ln(x)(21x2−x))dx=∫1321x2ln(x)dx−∫13xln(x)dxTo evaluate ∫1321x2ln(x)dxuse integration by parts , we let udu=lnx=x1dvv=x2dx=31x3∫1321x2ln(x)dx=21(31x3lnx∣∣13−∫1331x2dx)=21(31x3ln(x)−91x3)∣∣13=29ln3−913In the same way, we get ∫13xln(x)dx=−2+29ln3Hence∫13ln(x)(21x2−x)dx=29ln3−913−(−2+29ln3)=95
Comments