Question #119360
Let D={(x,y,z)∈R^3:1≤x≤3,0≤y≤ln(z),0≤z≤x}. The answer to ∭D e^yln(x)dV

is
Select one:
a. 13/9
b. 3/2
c. 5/9
d. -13/9
e. 2
f. 1/2
1
Expert's answer
2020-06-04T19:51:03-0400

Deyln(x)dv=130x(0lnzeyln(x)dy)dzdx=130x(ln(x)ey0lnz)dzdx=130x(ln(x)(elnz1))dzdx=130x(ln(x)(z1)))dzdx=13(ln(x)(12z2z)0x)dx=13(ln(x)(12x2x))dx=1312x2ln(x)dx13xln(x)dxTo evaluate 1312x2ln(x)dxuse integration by parts , we let u=lnx          dv=x2dxdu=1x       v=13x31312x2ln(x)dx=12(13x3lnx131313x2dx)=12(13x3ln(x)19x3)13=92ln3139In the same way, we get 13xln(x)dx=2+92ln3Hence13ln(x)(12x2x)dx=92ln3139(2+92ln3)=59\begin{aligned} \iiint_De^y \ln(x)dv&=\int_{1}^{3} \int_{0}^{x} ( \int_{0}^{\ln z} e^y\ln(x) dy)dzdx\\ &= \int_{1}^{3} \int_{0}^{x} ( \ln(x) e^y \bigg| _{0}^{\ln z} )dzdx\\ &= \int_{1}^{3} \int_{0}^{x} ( \ln(x) (e^{\ln z}-1) )dzdx\\ &= \int_{1}^{3} \int_{0}^{x} ( \ln(x) (z-1)) )dzdx\\ &= \int_{1}^{3} (\ln(x) (\frac {1}{2}z^2-z) \bigg| _{0}^{x} ) dx\\ &= \int_{1}^{3} (\ln(x) (\frac {1}{2}x^2-x) ) dx\\ &= \int_{1}^{3}\frac {1}{2}x^2\ln(x) dx-\int_{1}^{3} x\ln(x) dx \end{aligned}\\ \text {To evaluate \displaystyle } \int_{1}^{3}\frac {1}{2}x^2\ln(x) dx \\ \text {use integration by parts , we let } \\ \begin{aligned} u&=\ln x\ \ \ \ \ \ \ \ \ \ &dv&= x^2dx\\ du&= \frac{1}{x} \ \ \ \ \ \ \ & v&= \frac {1}{3}x^3 \end{aligned}\\ \begin{aligned} \int_{1}^{3}\frac {1}{2}x^2\ln(x) dx&= \frac{1}{2}\left( \frac {1}{3}x^3\ln x\bigg|_{1}^{3}- \int_{1}^{3}\frac {1}{3}x^2dx\right)\\ &=\frac{1}{2}\left (\frac {1}{3}x^3\ln(x)-\frac {1}{9}x^3\right) \bigg| _{1}^{3}\\ &= \frac {9}{2}\ln 3-\frac {13}{9} \end{aligned}\\ \text {In the same way, we get } \int_{1}^{3} x\ln(x) dx =-2+\frac {9}{2}\ln 3\\ \text{Hence} \\ \begin{aligned} \int_{1}^{3} \ln(x) (\frac {1}{2}x^2-x) dx &=\frac {9}{2}\ln 3-\frac {13}{9}-(-2+\frac {9}{2}\ln 3)\\ &=\frac {5}{9} \end{aligned}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS