By the definition, "f(t)=(t+10)-2" is the probability density function if
"\\int\\limits_{-\\infty}^{+\\infty}f(t)dt=1\\to \\int\\limits_0^{40}\\left(t+10-2\\right)dt=\\\\[0.3cm]\n=\\int\\limits_0^{40}\\left(t+8\\right)dt=C\\cdot\\left.\\left(\\frac{t^2}{2}+8t\\right)\\right|_0^{40}=\\\\[0.3cm]\nC\\cdot\\left(\\frac{1600}{2}+320\\right)=1\\to C\\cdot1120=1\\longrightarrow\\\\[0.3cm]\n\\boxed{C=\\frac{1}{1120}}"
Comment: Perhaps the probability distribution function was incorrectly indicated and actually meant "f(t)=1\/(t+10)^2" , then
"\\int\\limits_{-\\infty}^{+\\infty}f(t)dt=1\\to \\int\\limits_0^{40}\\left(\\frac{1}{(t+10)^2}\\right)dt=\\\\[0.3cm]\n-C\\cdot\\left.\\left(\\frac{1}{t+10}\\right)\\right|_0^{40}=-C\\cdot\\left(\\frac{1}{50}-\\frac{1}{10}\\right)=1\\\\[0.3cm] -C\\cdot\\frac{1-5}{50}=1\\longrightarrow C=\\frac{50}{4}=\\frac{25}{2}=12.5\\\\[0.3cm]\n\\boxed{C=\\frac{25}{2}=12.5}"
ANSWER
"\\text{If}\\,\\,\\,f(t)=(t+10)-2\\longrightarrow C=\\frac{1}{1120}\\\\[0.3cm]\n\\text{If}\\,\\,\\,f(t)=\\frac{1}{(t+10)^2}\\longrightarrow C=\\frac{25}{2}=12.5\\\\[0.3cm]"
Comments
Leave a comment