(i) "f(x)=\\sqrt{\\tan^{-1}(x)}"
Differentiating with respect to x both sides,
"f'(x) = [\\frac{1}{2\\sqrt {tan^{-1} x}}] [\\frac{1}{1 + x^2}]"
(ii) f(x) = cos-1(e2x)
Differentiating with respect to x both sides,
"f'(x) = [\\frac{-2e^{2x}}{\\sqrt{1 - {e^{4x} }}} ]"
"(iv) f(x) = tan^{-1}\\frac{x}{\\sqrt{x - x^{2}}}"
Differentiating with respect to x both sides,
"f'(x) = [\\frac{1}{1 + {\\frac{x^{2}}{x - x^{2}} }} ] [\\frac{\\sqrt{x - x^{2}} - \\frac{x{(1 - 2x)}}{2\\sqrt{x - x^{2}}}}{x - x^{2}}]"
Solving equation, we get,
"f'(x) = \\frac{(1-x)(2x - 2x^{2} - x + 2x^{2})}{2 {(x - x^{2})}^{3\/2}}"
"f'(x) = \\frac{1}{2 } [ ({x - x^{2}})^{(- {\\frac{1}{2}})}]"
"(iii) f(x) = {sin^{-1}{\\sqrt{1 - \\sqrt{x^{2} }}}}"
"so, f(x) will be \\implies f(x) = {sin^{-1}{\\sqrt{1 - x}}}"
Differentiating both sides w.r.t. x
"f'(x) = \\frac{1}{\\sqrt{1 - (1-x)}} \\frac{-1}{(2\\sqrt{1-x})}"
"f'(x) = \\frac{-1}{2 \\sqrt{x- x^{2}}}"
(v) F(x) = sin(tan-14x)
Differentiating both sides with respect to x,
"f'(x) = \\frac{(4 cos(tan^{-1}4x))}{1 + 16x^{2}}"
Comments
Leave a comment