(i) f ( x ) = tan − 1 ( x ) f(x)=\sqrt{\tan^{-1}(x)} f ( x ) = tan − 1 ( x )
Differentiating with respect to x both sides,
f ′ ( x ) = [ 1 2 t a n − 1 x ] [ 1 1 + x 2 ] f'(x) = [\frac{1}{2\sqrt {tan^{-1} x}}] [\frac{1}{1 + x^2}] f ′ ( x ) = [ 2 t a n − 1 x 1 ] [ 1 + x 2 1 ]
(ii) f(x) = cos-1 (e2x )
Differentiating with respect to x both sides,
f ′ ( x ) = [ − 2 e 2 x 1 − e 4 x ] f'(x) = [\frac{-2e^{2x}}{\sqrt{1 - {e^{4x} }}} ] f ′ ( x ) = [ 1 − e 4 x − 2 e 2 x ]
( i v ) f ( x ) = t a n − 1 x x − x 2 (iv) f(x) = tan^{-1}\frac{x}{\sqrt{x - x^{2}}} ( i v ) f ( x ) = t a n − 1 x − x 2 x
Differentiating with respect to x both sides,
f ′ ( x ) = [ 1 1 + x 2 x − x 2 ] [ x − x 2 − x ( 1 − 2 x ) 2 x − x 2 x − x 2 ] f'(x) = [\frac{1}{1 + {\frac{x^{2}}{x - x^{2}} }} ] [\frac{\sqrt{x - x^{2}} - \frac{x{(1 - 2x)}}{2\sqrt{x - x^{2}}}}{x - x^{2}}] f ′ ( x ) = [ 1 + x − x 2 x 2 1 ] [ x − x 2 x − x 2 − 2 x − x 2 x ( 1 − 2 x ) ]
Solving equation, we get,
f ′ ( x ) = ( 1 − x ) ( 2 x − 2 x 2 − x + 2 x 2 ) 2 ( x − x 2 ) 3 / 2 f'(x) = \frac{(1-x)(2x - 2x^{2} - x + 2x^{2})}{2 {(x - x^{2})}^{3/2}} f ′ ( x ) = 2 ( x − x 2 ) 3/2 ( 1 − x ) ( 2 x − 2 x 2 − x + 2 x 2 )
f ′ ( x ) = 1 2 [ ( x − x 2 ) ( − 1 2 ) ] f'(x) = \frac{1}{2 } [ ({x - x^{2}})^{(- {\frac{1}{2}})}] f ′ ( x ) = 2 1 [( x − x 2 ) ( − 2 1 ) ]
( i i i ) f ( x ) = s i n − 1 1 − x 2 (iii) f(x) = {sin^{-1}{\sqrt{1 - \sqrt{x^{2} }}}} ( iii ) f ( x ) = s i n − 1 1 − x 2
s o , f ( x ) w i l l b e ⟹ f ( x ) = s i n − 1 1 − x so, f(x) will be \implies f(x) = {sin^{-1}{\sqrt{1 - x}}} so , f ( x ) w i ll b e ⟹ f ( x ) = s i n − 1 1 − x
Differentiating both sides w.r.t. x
f ′ ( x ) = 1 1 − ( 1 − x ) − 1 ( 2 1 − x ) f'(x) = \frac{1}{\sqrt{1 - (1-x)}} \frac{-1}{(2\sqrt{1-x})} f ′ ( x ) = 1 − ( 1 − x ) 1 ( 2 1 − x ) − 1
f ′ ( x ) = − 1 2 x − x 2 f'(x) = \frac{-1}{2 \sqrt{x- x^{2}}} f ′ ( x ) = 2 x − x 2 − 1
(v) F(x) = sin(tan-1 4x)
Differentiating both sides with respect to x,
f ′ ( x ) = ( 4 c o s ( t a n − 1 4 x ) ) 1 + 16 x 2 f'(x) = \frac{(4 cos(tan^{-1}4x))}{1 + 16x^{2}} f ′ ( x ) = 1 + 16 x 2 ( 4 cos ( t a n − 1 4 x ))
Comments