area of the curve f is :
∫ 0 π 3 1 2 ( f ( θ ) ) 2 d θ \intop_0^{\frac{\pi}{3}} \frac{1}{2}{(f(\theta))}^2d\theta ∫ 0 3 π 2 1 ( f ( θ )) 2 d θ
here, f = 1 + 2 s i n θ f=1+2sin\theta f = 1 + 2 s in θ
= ∫ 0 π 3 1 2 ( 1 + 2 s i n θ ) 2 d θ =\intop_0^{\frac{\pi}{3}} \frac{1}{2}{(1+2sin\theta)}^2d\theta = ∫ 0 3 π 2 1 ( 1 + 2 s in θ ) 2 d θ
= ∫ 0 π 3 1 2 ( 1 + 4 s i n 2 θ + 4 s i n θ ) d θ =\intop_0^{\frac{\pi}{3}} \frac{1}{2}{(1+4sin^2\theta+4sin\theta)}d\theta = ∫ 0 3 π 2 1 ( 1 + 4 s i n 2 θ + 4 s in θ ) d θ
= 1 2 [ π 3 − 4 c o s θ ∣ 0 π 3 + 4 ∣ θ 2 − s i n 2 θ 4 ∣ 0 π 3 ] =\frac{1}{2} [\frac{\pi}{3}-4cos\theta|_0^{\frac{\pi}{3}}+4 |\frac{\theta}{2}-\frac{sin2\theta}{4}|_0^{\frac{\pi}{3}}] = 2 1 [ 3 π − 4 cos θ ∣ 0 3 π + 4∣ 2 θ − 4 s in 2 θ ∣ 0 3 π ]
because ∫ s i n 2 x d x = x 2 − s i n 2 x 4 \int sin^2 x dx=\frac{x}{2}-\frac{sin2x}{4} ∫ s i n 2 x d x = 2 x − 4 s in 2 x
= 1 2 [ π 3 + 4. 1 2 + 4 ( π 6 − 3 2 ) ] = \frac{1}{2}[\frac{\pi}{3}+4.\frac{1}{2}+4(\frac{\pi}{6}-\frac{\sqrt3}{2})] = 2 1 [ 3 π + 4. 2 1 + 4 ( 6 π − 2 3 )]
= π 2 + 1 − 3 4 =\frac{\pi}{2}+1-\frac{\sqrt3}{4} = 2 π + 1 − 4 3
Comments