Question #118839
Find the area enclosed by the curve r(θ)=1+2sinθ and the rays θ=0 and θ=π3
1
Expert's answer
2020-05-31T19:11:47-0400

area of the curve f is :

0π312(f(θ))2dθ\intop_0^{\frac{\pi}{3}} \frac{1}{2}{(f(\theta))}^2d\theta


here, f=1+2sinθf=1+2sin\theta


=0π312(1+2sinθ)2dθ=\intop_0^{\frac{\pi}{3}} \frac{1}{2}{(1+2sin\theta)}^2d\theta


=0π312(1+4sin2θ+4sinθ)dθ=\intop_0^{\frac{\pi}{3}} \frac{1}{2}{(1+4sin^2\theta+4sin\theta)}d\theta


=12[π34cosθ0π3+4θ2sin2θ40π3]=\frac{1}{2} [\frac{\pi}{3}-4cos\theta|_0^{\frac{\pi}{3}}+4 |\frac{\theta}{2}-\frac{sin2\theta}{4}|_0^{\frac{\pi}{3}}]


because sin2xdx=x2sin2x4\int sin^2 x dx=\frac{x}{2}-\frac{sin2x}{4}


=12[π3+4.12+4(π632)]= \frac{1}{2}[\frac{\pi}{3}+4.\frac{1}{2}+4(\frac{\pi}{6}-\frac{\sqrt3}{2})]


=π2+134=\frac{\pi}{2}+1-\frac{\sqrt3}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS