area of the curve f is :
"\\intop_0^{\\frac{\\pi}{3}} \\frac{1}{2}{(f(\\theta))}^2d\\theta"
here, "f=1+2sin\\theta"
"=\\intop_0^{\\frac{\\pi}{3}} \\frac{1}{2}{(1+2sin\\theta)}^2d\\theta"
"=\\intop_0^{\\frac{\\pi}{3}} \\frac{1}{2}{(1+4sin^2\\theta+4sin\\theta)}d\\theta"
"=\\frac{1}{2} [\\frac{\\pi}{3}-4cos\\theta|_0^{\\frac{\\pi}{3}}+4 |\\frac{\\theta}{2}-\\frac{sin2\\theta}{4}|_0^{\\frac{\\pi}{3}}]"
because "\\int sin^2 x dx=\\frac{x}{2}-\\frac{sin2x}{4}"
"= \\frac{1}{2}[\\frac{\\pi}{3}+4.\\frac{1}{2}+4(\\frac{\\pi}{6}-\\frac{\\sqrt3}{2})]"
"=\\frac{\\pi}{2}+1-\\frac{\\sqrt3}{4}"
Comments
Leave a comment